evaluator.py 6.7 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
Leo Gao's avatar
Leo Gao committed
4
import lm_eval.metrics
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
import numpy as np

def simple_evaluate(model, model_args, task_names, num_fewshot=0, batch_size=None, device=None, no_cache=False, limit=None, bootstrap_iters=100000):
    random.seed(1234)
    np.random.seed(1234)

    lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
        'batch_size': batch_size, 'device': device
    })

    if not no_cache:
        lm = lm_eval.base.CachingLM(lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db')
    
    task_dict = lm_eval.tasks.get_task_dict(task_names)
    results = evaluate(lm, task_dict, False, num_fewshot, limit)

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
        "bootstrap_iters": bootstrap_iters
    }

    return results
Leo Gao's avatar
Leo Gao committed
37
38


39
def evaluate(lm, task_dict, provide_description, num_fewshot, limit, bootstrap_iters=100000):
40
41
    assert not provide_description # not implemented. todo: implement proper description-providing system

Leo Gao's avatar
Leo Gao committed
42
43
44
45
46
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

    task_dict_items = [(name, task) for name, task in task_dict.items() if(task.has_validation_docs() or task.has_test_docs())]

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
47
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

    # if we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger memory,
    # we can always modify this plumbing to support that, but i didn't want to include it just yet because overengineering is bad
    # (or we could make it write the requests to disk and then read them back out again - probably using an sqlite db because of all the moving parts we have

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable

    docs = {}

    # get lists of each type of requeste
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
62
        versions[task_name] = task.VERSION
Leo Gao's avatar
Leo Gao committed
63
64
65
        #default to test doc, fall back to val doc if validation unavailable
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
66
            task_doc_func = task.test_docs
Leo Gao's avatar
Leo Gao committed
67
68
        elif task.has_validation_docs():
            task_doc_func = task.validation_docs
Leo Gao's avatar
Leo Gao committed
69

Leo Gao's avatar
Leo Gao committed
70
71
72
73
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
74
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
75
76

        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
Leo Gao's avatar
Leo Gao committed
77
78
79
80
81
82
            docs[(task_name, doc_id)] = doc

            ctx = task.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
83
                rnd=rnd
Leo Gao's avatar
Leo Gao committed
84
85
86
            )

            reqs = task.construct_requests(doc, ctx)
Leo Gao's avatar
Leo Gao committed
87
            if not isinstance(reqs, (list, tuple)): reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            for i, req in enumerate(reqs):
                requests[req.type].append(req)
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
                requests_origin[req.type].append((i, task_name, doc, doc_id))

    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
        # TODO: right now, this code runs multiple seperate LM requests for multiple Requests differing
        # only in index. We could implement some kind of caching, but that would be more of a bandaid
        # solution. we could also implement some kind of autogrouping here; they should end up next to each other.

Leo Gao's avatar
Leo Gao committed
103
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        resps = getattr(lm, reqtype)([req.args for req in reqs])

        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
        results[task_name][metric] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
129

130
131
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
132
        stderr = lm_eval.metrics.stderr_for_metric(task.aggregation()[metric], bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters)
Leo Gao's avatar
Leo Gao committed
133
134
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
135
    
Leo Gao's avatar
Leo Gao committed
136
    return {
137
138
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
139
    }
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


def make_table(result_dict):
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
            if m.endswith("_stderr"): continue

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]

                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()