evaluator.py 14.9 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
3
import numpy as np
Leo Gao's avatar
Leo Gao committed
4
import random
Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
Stephen Hogg's avatar
Stephen Hogg committed
9
from lm_eval.utils import positional_deprecated, run_task_tests
10

Fabrizio Milo's avatar
Fabrizio Milo committed
11

12
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
13
14
15
16
17
18
19
20
21
22
23
24
25
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
    decontamination_ngrams_path=None,
26
27
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
28
):
29
    """Instantiate and evaluate a model on a list of tasks.
30

31
32
33
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
34
        String arguments for each model class, see LM.create_from_arg_string.
35
36
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
37
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
38
39
40
41
42
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
43
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
44
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
45
        Whether or not to cache
46
47
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
48
49
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
50
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
51
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
52
53
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
54
    :param write_out: bool
55
        If True, write details about prompts and logits to json for all tasks
56
    :param output_base_path: str, optional
57
        Directory to which detailed eval info will be written. Defaults to present working dir.
58
    :return
59
        Dictionary of results
60
    """
61
62
63
    random.seed(1234)
    np.random.seed(1234)

64
65
66
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
67
68
69
70
71
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
            model_args, {"batch_size": batch_size, "device": device}
        )
72
73
74
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
75
76

    if not no_cache:
77
        lm = lm_eval.base.CachingLM(
Fabrizio Milo's avatar
Fabrizio Milo committed
78
79
80
81
82
83
            lm,
            "lm_cache/"
            + model
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
84
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
85

86
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
87

Stephen Hogg's avatar
Stephen Hogg committed
88
    if check_integrity:
89
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
90

91
92
93
94
95
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
96
        bootstrap_iters=bootstrap_iters,
97
        description_dict=description_dict,
Fabrizio Milo's avatar
Fabrizio Milo committed
98
        decontamination_ngrams_path=decontamination_ngrams_path,
99
100
        write_out=write_out,
        output_base_path=output_base_path,
101
    )
102
103
104
105
106
107
108
109
110
111

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
112
        "bootstrap_iters": bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
113
        "description_dict": description_dict,
114
115
116
    }

    return results
Leo Gao's avatar
Leo Gao committed
117

Fabrizio Milo's avatar
Fabrizio Milo committed
118

119
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
120

Fabrizio Milo's avatar
Fabrizio Milo committed
121

122
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
123
124
125
126
127
128
129
130
131
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    decontamination_ngrams_path=None,
132
133
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
134
):
135
136
137
138
139
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
140
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
141
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
142
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
143
144
145
146
147
148
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
149
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
150
        Dictionary of custom task descriptions of the form: `task_name: description`
151
    :param write_out: bool
152
        If True, write all prompts, logits and metrics to json for offline analysis
153
    :param output_base_path: str, optional
154
        Directory to which detailed eval info will be written. Defaults to present working dir
155
156
157
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
158
159
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

160
161
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
162
163
    if provide_description is not None:
        # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
164
165
166
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
167

Leo Gao's avatar
Leo Gao committed
168
    decontaminate = decontamination_ngrams_path is not None
169

170
171
172
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
Fabrizio Milo's avatar
Fabrizio Milo committed
173
        if (task.has_validation_docs() or task.has_test_docs())
174
    ]
Leo Gao's avatar
Leo Gao committed
175
176

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
177
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
178
179
180
181

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

Fabrizio Milo's avatar
Fabrizio Milo committed
182
    overlaps = collections.defaultdict(list)  # {task_name: contaminated_docs}
183

184
185
186
187
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
188
189
190

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}
Julen Etxaniz's avatar
Julen Etxaniz committed
191
    write_out_info = {}
Leo Gao's avatar
Leo Gao committed
192

193
194
    docs_for_decontamination = collections.defaultdict(list)

195
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
196
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
197
        versions[task_name] = task.VERSION
198
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
199
200
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
201
            task_doc_func = task.test_docs
Fabrizio Milo's avatar
Fabrizio Milo committed
202
            task_set = "test"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
203
        elif task.has_validation_docs():
Fabrizio Milo's avatar
Fabrizio Milo committed
204
            task_set = "val"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
205
            task_doc_func = task.validation_docs
206
207
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
208

Leo Gao's avatar
Leo Gao committed
209
210
211
212
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
213
        rnd.shuffle(task_docs)
214
215
        print(f"Task: {task_name}; number of docs: {len(task_docs)}")

216
        if write_out:
217
            prompt_details = []
Leo Gao's avatar
Leo Gao committed
218

Fabrizio Milo's avatar
Fabrizio Milo committed
219
220
221
222
223
        description = (
            description_dict[task_name]
            if description_dict and task_name in description_dict
            else ""
        )
224
225
        if limit is not None:
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
226

Leo Gao's avatar
Leo Gao committed
227
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
228
            if decontaminate and task.should_decontaminate():
Fabrizio Milo's avatar
Fabrizio Milo committed
229
230
231
                docs_for_decontamination[(task_name, task_set)].append(
                    task.doc_to_decontamination_query(doc)
                )
232

Leo Gao's avatar
Leo Gao committed
233
234
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
Fabrizio Milo's avatar
Fabrizio Milo committed
235
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
236
237
            )
            reqs = task.construct_requests(doc, ctx)
238

239
            if write_out:
240
241
242
243
244
245
246
247
248
                prompt_details.append({"doc_id": doc_id})

            # print the prompt for the first few documents
            if doc_id < 1:
                print(
                    f"Task: {task_name}; document {doc_id}; context prompt (starting on next line):\n{ctx}\n(end of prompt on previous line)"
                )
                print("Requests:", reqs)

249
250
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
251
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
252
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
253
254
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
255
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
256

257
                if write_out:
258
259
260
261
                    prompt_details[-1][f"prompt_{i}"] = "".join(
                        (map(lambda x: "".join(x), req.args))
                    )

262
        if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
263
            write_out_info[task_name] = prompt_details
264

265
266
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
267
        from lm_eval.decontamination.decontaminate import get_train_overlap
jon-tow's avatar
jon-tow committed
268

269
        print("Finding train/test overlap, please wait...")
Fabrizio Milo's avatar
Fabrizio Milo committed
270
271
272
        overlaps = get_train_overlap(
            docs_for_decontamination, decontamination_ngrams_path, limit
        )
273

Leo Gao's avatar
Leo Gao committed
274
275
276
277
278
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
279
280
281
282
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
283

Leo Gao's avatar
Leo Gao committed
284
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
285
        resps = getattr(lm, reqtype)([req.args for req in reqs])
Fabrizio Milo's avatar
Fabrizio Milo committed
286
287
288
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
289
290
291

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
Fabrizio Milo's avatar
Fabrizio Milo committed
292

293
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
294
                write_out_info[task_name][doc_id][f"logit_{i}"] = resp
295
296
                task = task_dict[task_name]
                if isinstance(task, lm_eval.base.MultipleChoiceTask):
Julen Etxaniz's avatar
Julen Etxaniz committed
297
                    write_out_info[task_name][doc_id]["truth"] = doc["gold"]
298
                elif isinstance(task, lm_eval.tasks.winogrande.Winogrande):
Julen Etxaniz's avatar
Julen Etxaniz committed
299
                    write_out_info[task_name][doc_id]["truth"] = task.answer_to_num[
300
301
302
                        doc["answer"]
                    ]
                else:
Julen Etxaniz's avatar
Julen Etxaniz committed
303
                    write_out_info[task_name][doc_id]["truth"] = task.doc_to_target(doc)
304

Leo Gao's avatar
Leo Gao committed
305
306
307
308
309
310
311
312
313
314
315
316
317
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
318

319
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
320
                write_out_info[task_name][doc_id][metric] = str(value)
321

322
323
324
325
            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Fabrizio Milo's avatar
Fabrizio Milo committed
326

Leo Gao's avatar
Leo Gao committed
327
328
329
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
Fabrizio Milo's avatar
Fabrizio Milo committed
330
        real_metric = metric  # key when looking up the metric with task.aggregation
331
        if metric.endswith(decontaminate_suffix):
Fabrizio Milo's avatar
Fabrizio Milo committed
332
333
334
            real_metric = metric.replace(
                decontaminate_suffix, ""
            )  # decontaminated still uses the same metric
335
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
336

337
338
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
339

340
        stderr = lm_eval.metrics.stderr_for_metric(
341
            metric=task.aggregation()[real_metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
342
343
344
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
345
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
346

Leo Gao's avatar
Leo Gao committed
347
348
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
349

350
    if write_out:
351
352
353
        import json
        import pathlib

354
355
356
        output_base_path = (
            pathlib.Path(output_base_path)
            if output_base_path is not None
357
358
359
            else pathlib.Path(".")
        )
        try:
360
            output_base_path.mkdir(parents=True, exist_ok=False)
361
362
363
364
365
        except FileExistsError:
            pass

        for task_name, _ in task_dict_items:
            with open(
Julen Etxaniz's avatar
Julen Etxaniz committed
366
                output_base_path.joinpath(f"{task_name}_write_out_info.json"),
367
368
369
                "w",
                encoding="utf8",
            ) as fp:
Julen Etxaniz's avatar
Julen Etxaniz committed
370
                json.dump(write_out_info[task_name], fp, indent=4, ensure_ascii=False)
371

Fabrizio Milo's avatar
Fabrizio Milo committed
372
    return {"results": dict(results), "versions": dict(versions)}
373
374
375


def make_table(result_dict):
376
    """Generate table of results."""
377
378
379
380
381
382
383
384
385
386
387
388
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
389
390
            if m.endswith("_stderr"):
                continue
391
392
393

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
Fabrizio Milo's avatar
Fabrizio Milo committed
394
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
395
            else:
Fabrizio Milo's avatar
Fabrizio Milo committed
396
                values.append([k, version, m, "%.4f" % v, "", ""])
397
398
399
400
401
402
403
404
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

405
    return md_writer.dumps()