evaluator.py 8.39 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
Leo Gao's avatar
Leo Gao committed
4
import lm_eval.metrics
5
6
7
8
9
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
import numpy as np

10
11
12
13

def simple_evaluate(model, model_args, task_names,
                    num_fewshot=0, batch_size=None, device=None,
                    no_cache=False, limit=None, bootstrap_iters=100000):
14
    """Instantiate and evaluate a model on a list of tasks.
15
16
17
18
19
20
21
22
23
24
25
26

    :param model: str
        Name of model, see lm_eval.models.get_model
    :param model_args: str
        String arguments for each model class, see LM.create_from_arg_string
    :param task_names: list[str]
        List of task names
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
27
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
28
29
30
31
32
33
34
    :param no_cache: bool
        Whether or not
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :return
35
        Dictionary of results
36
    """
37
38
39
40
41
42
43
44
    random.seed(1234)
    np.random.seed(1234)

    lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
        'batch_size': batch_size, 'device': device
    })

    if not no_cache:
45
46
47
        lm = lm_eval.base.CachingLM(
            lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db'
        )
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    
    task_dict = lm_eval.tasks.get_task_dict(task_names)
    results = evaluate(lm, task_dict, False, num_fewshot, limit)

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
        "bootstrap_iters": bootstrap_iters
    }

    return results
Leo Gao's avatar
Leo Gao committed
65
66


67
def evaluate(lm, task_dict, provide_description, num_fewshot, limit, bootstrap_iters=100000):
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
        Dictionary of tasks
    :param provide_description: bool
        NOT IMPLEMENTED
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
85
86
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

87
88
89
90
91
92
93
94
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.

    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
        if(task.has_validation_docs() or task.has_test_docs())
    ]
Leo Gao's avatar
Leo Gao committed
95
96

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
97
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
98
99
100
101

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

102
103
104
105
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
106
107
108
109

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

110
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
111
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
112
        versions[task_name] = task.VERSION
113
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
114
115
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
116
            task_doc_func = task.test_docs
Leo Gao's avatar
Leo Gao committed
117
118
        elif task.has_validation_docs():
            task_doc_func = task.validation_docs
119
120
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
121

Leo Gao's avatar
Leo Gao committed
122
123
124
125
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
126
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
127
128

        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
Leo Gao's avatar
Leo Gao committed
129
130
131
132
133
134
            docs[(task_name, doc_id)] = doc

            ctx = task.fewshot_context(
                doc=doc,
                provide_description=provide_description,
                num_fewshot=num_fewshot,
135
                rnd=rnd
Leo Gao's avatar
Leo Gao committed
136
137
138
            )

            reqs = task.construct_requests(doc, ctx)
139
140
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
141
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
142
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
143
144
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
145
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
146
147
148
149
150
151

    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
152
153
154
155
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
156

Leo Gao's avatar
Leo Gao committed
157
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        resps = getattr(lm, reqtype)([req.args for req in reqs])
        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
        results[task_name][metric] = task.aggregation()[metric](items)
Leo Gao's avatar
Leo Gao committed
182

183
184
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
185
186
187
188
        stderr = lm_eval.metrics.stderr_for_metric(
            metric=task.aggregation()[metric],
            bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters,
        )
Leo Gao's avatar
Leo Gao committed
189
190
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
191
    
Leo Gao's avatar
Leo Gao committed
192
    return {
193
194
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
195
    }
196
197
198


def make_table(result_dict):
199
    """Generate table of results."""
200
201
202
203
204
205
206
207
208
209
210
211
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
212
213
            if m.endswith("_stderr"):
                continue
214
215
216
217
218
219
220
221
222
223
224
225
226
227

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

228
    return md_writer.dumps()