task.py 37.5 KB
Newer Older
1
import abc
2
from dataclasses import dataclass, field, asdict
3
4

import re
5
import ast
lintangsutawika's avatar
lintangsutawika committed
6
import yaml
7
8
9
import evaluate
import random
import itertools
10
import functools
11
12
13
14

import datasets
import numpy as np

15
16
from typing import Union
from collections.abc import Callable
17

18
from lm_eval import utils
19
from lm_eval.api import samplers
haileyschoelkopf's avatar
haileyschoelkopf committed
20
from lm_eval.api.instance import Instance
lintangsutawika's avatar
lintangsutawika committed
21
from lm_eval.api.filter import FilterEnsemble
22
23
24
25

from lm_eval.logger import eval_logger
from lm_eval.prompts import get_prompt
from lm_eval.filters import build_filter_ensemble
lintangsutawika's avatar
lintangsutawika committed
26
27
28
29
30
31
from lm_eval.api.metrics import (
    mean,
    weighted_perplexity,
    bits_per_byte,
)
from lm_eval.api.registry import (
haileyschoelkopf's avatar
haileyschoelkopf committed
32
33
34
35
    get_metric,
    get_aggregation,
    get_default_aggregation,
    is_higher_better,
36
37
    DEFAULT_METRIC_REGISTRY,
    OUTPUT_TYPE_REGISTRY,
lintangsutawika's avatar
lintangsutawika committed
38
39
    AGGREGATION_REGISTRY,
)
40

41
42
43
44
45
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
    "greedy_until",
46
    "winograd_schema",
47
48
]

49
50
51

@dataclass
class TaskConfig(dict):
52
    # task naming/registry
53
    task: str = None
54
    group: Union[str, list] = None
55
56
57
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
58
59
    dataset_path: str = None
    dataset_name: str = None
60
    dataset_kwargs: dict = None
61
62
63
    training_split: str = None
    validation_split: str = None
    test_split: str = None
lintangsutawika's avatar
lintangsutawika committed
64
    fewshot_split: str = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
65
66
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
haileyschoelkopf's avatar
haileyschoelkopf committed
67
    template_aliases: str = ""
68
69
    doc_to_text: Union[Callable, str] = None
    doc_to_target: Union[Callable, str] = None
70
    gold_alias: Union[Callable, str] = None
71
    use_prompt: str = None
72
    description: str = ""
73
74
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
75
    # runtime configuration options
76
    num_fewshot: int = 0
77
    # scoring options
78
    metric_list: str = None
lintangsutawika's avatar
lintangsutawika committed
79
    gold_alias: Union[Callable, str] = None
80
    create_choices: Union[Callable, str] = None
81
    output_type: str = "greedy_until"
82
    generation_kwargs: dict = None
83
    repeats: int = 1
lintangsutawika's avatar
lintangsutawika committed
84
    filter_list: Union[str, list] = None
85
86
    should_decontaminate: bool = False
    doc_to_decontamination_query: str = None
87

lintangsutawika's avatar
lintangsutawika committed
88
    metadata: str = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
89

90
91
92
93
    def __post_init__(self):
        # allow user-specified aliases so that users can
        # force prompt-compatibility for some prompt regardless of
        # field names in prompt
94
        if self.template_aliases:
95
96
            if type(self.doc_to_text) == str:
                self.doc_to_text = self.template_aliases + self.doc_to_text
97

98
99
            if type(self.doc_to_target) == str:
                self.doc_to_target = self.template_aliases + self.doc_to_target
100

101
            if type(self.gold_alias) == str:
lintangsutawika's avatar
lintangsutawika committed
102
                self.gold_alias = self.template_aliases + self.gold_alias
103

Lintang Sutawika's avatar
Lintang Sutawika committed
104
105
106
107
108
109
110
111
112
113
114
115
        if self.generation_kwargs is not None:
            if self.output_type != "greedy_until":
                eval_logger.warning(
                    "passed `generation_kwargs`, but not using a generation request type!"
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
116
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
117
118
119
120
        else:
            if self.output_type == "greedy_until":
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
Lintang Sutawika's avatar
Lintang Sutawika committed
121
                    "until": None
122
123
                    if self.fewshot_delimiter is None
                    else [self.fewshot_delimiter],
Lintang Sutawika's avatar
Lintang Sutawika committed
124
125
126
                    "do_sample": False,
                    "temperature": 0.0,
                }
127

haileyschoelkopf's avatar
haileyschoelkopf committed
128
129
        # TODO: how to make TaskConfigs be de- and re-serializable, even when using the !function constructor?

130
131
132
    def __getitem__(self, item):
        return getattr(self, item)

133
    def to_dict(self):
134
135
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
136
        Used for dumping results alongside full task configuration
137

haileyschoelkopf's avatar
haileyschoelkopf committed
138
139
140
141
142
143
144
145
146
147
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
            elif isinstance(v, Callable):
                # TODO: this should handle Promptsource template objects as a separate case?
                cfg_dict[k] = str(v)
haileyschoelkopf's avatar
haileyschoelkopf committed
151
        return cfg_dict
152

153
154
155
156
157
158
159
160
161
162
163
164

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

    VERSION = None
165

166
167
168
169
170
171
172
173
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    OUTPUT_TYPE: str = None
lintangsutawika's avatar
lintangsutawika committed
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    def __init__(
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config=None,
    ):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
        self._training_docs = None
        self._fewshot_docs = None
        self._instances = None

haileyschoelkopf's avatar
haileyschoelkopf committed
209
        self._config = TaskConfig(**config) if config else TaskConfig()
210
211
212

        if not hasattr(self, "_filters"):
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
213
            for name, components in self._config.get(
214
                "filters", [["none", [["take_first", None]]]]
lintangsutawika's avatar
lintangsutawika committed
215
            ):
216
217
218
                filter_pipeline = build_filter_ensemble(name, components)
                self._filters.append(filter_pipeline)

lintangsutawika's avatar
lintangsutawika committed
219
220
221
        self.sampler = samplers.Sampler(
            list(self.fewshot_docs()), self, rnd=random.Random()
        )  # TODO: pass the correct docs in here
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    def download(self, data_dir=None, cache_dir=None, download_mode=None):
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
248
249
250
251
252
253
254
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

    def training_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def validation_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

    def test_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

292
293
294
295
296
297
298
299
300
301
    def fewshot_docs(self):
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
302
            eval_logger.warning(
303
                "has_training_docs and has_validation_docs are False"
304
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
305
            )
306
307
            return self.test_docs()

308
309
310
311
312
313
314
315
316
317
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
318

319
320
321
    def create_choices(self, doc):
        if self._config.create_choices is None:
            return ast.literal_eval(
322
323
324
325
                utils.apply_template(
                    self._config.template_aliases + "{{answer_choices}}", doc
                )
            )
Benjamin Fattori's avatar
Benjamin Fattori committed
326
327
        elif type(self._config.create_choices) == str:
            return utils.apply_template(self._config.create_choices, doc)
328
329
        else:
            return self._config.create_choices(doc)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

    @property
    def instances(self):
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

    def doc_to_decontamination_query(self, doc):
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

358
    def build_all_requests(self, limit=None, rank=None, world_size=None):
359
360
361
362
363
364
365
366
367
368
369
        """Build a set of Instances for a task, and store them in task.instances"""
        if self.has_test_docs():
            docs = self.test_docs()
        elif self.has_validation_docs():
            docs = self.validation_docs()
        else:
            assert (
                False
            ), f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"

        instances = []
370
371
        for doc_id, doc in utils.create_iterator(
            enumerate(docs), rank, world_size, limit
lintangsutawika's avatar
lintangsutawika committed
372
        ):
373
            # sample fewshot context #TODO: need to offset doc_id by rank now!
374
375
376
            fewshot_ctx = self.fewshot_context(
                doc, self._config.num_fewshot, rnd=random.Random()
            )
377

haileyschoelkopf's avatar
haileyschoelkopf committed
378
            # TODO: we should override self._config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
379
380
381
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
382
                metadata=(self._config["task"], doc_id, self._config.repeats),
lintangsutawika's avatar
lintangsutawika committed
383
            )
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

            if not isinstance(inst, list):
                inst = [inst]

            instances.extend(inst)

        self._instances = instances
        assert len(self._instances) != 0, "task.build_requests() did not find any docs!"

    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
409
            The number of times each instance in a dataset is inferred on. Defaults to 1,
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

haileyschoelkopf's avatar
haileyschoelkopf committed
445
446
447
448
449
450
451
452
453
454
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    @utils.positional_deprecated
    def fewshot_context(self, doc, num_fewshot, rnd=None):
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :returns: str
            The fewshot context.
        """
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"

        if num_fewshot == 0:
475
476
            # always prepend the (possibly empty) task description
            labeled_examples = self._config.description
477
        else:
lintangsutawika's avatar
lintangsutawika committed
478
479
480
            labeled_examples = self._config.description + self.sampler.get_context(
                doc, num_fewshot
            )
481
482
483
484
485
486

        example = self.doc_to_text(doc)
        return labeled_examples + example

    def apply_filters(self):

lintangsutawika's avatar
lintangsutawika committed
487
488
489
490
491
492
        if hasattr(self, "_filters"):
            for f in self._filters:
                f.apply(self._instances)
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
493

494
    def dump_config(self):
495
        """Returns a dictionary representing the task's config.
496
497
498
499
500

        :returns: str
            The fewshot context.
        """
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
501
        # (num_fewshot)
502
503
        return self._config.to_dict()

504
505
506

class ConfigurableTask(Task):

507
    VERSION = "Yaml"
508
    OUTPUT_TYPE = None
509
    CONFIG = None
510
511
512
513

    def __init__(
        self, data_dir=None, cache_dir=None, download_mode=None, config: dict = None
    ):
514
        # Get pre-configured attributes
515
        self._config = self.CONFIG
516

517
518
        # Use new configurations if there was no preconfiguration
        if self._config is None:
519
            self._config = TaskConfig(**config)
520
521
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
522
            if config is not None:
523
                self._config.__dict__.update(config)
524

525
        if self._config is None:
lintangsutawika's avatar
lintangsutawika committed
526
527
528
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
529
530

        if self._config.output_type is not None:
531
            assert self._config.output_type in ALL_OUTPUT_TYPES
532
533
            self.OUTPUT_TYPE = self._config.output_type

534
535
536
537
538
539
        if self._config.dataset_path is not None:
            self.DATASET_PATH = self._config.dataset_path

        if self._config.dataset_name is not None:
            self.DATASET_NAME = self._config.dataset_name

540
541
542
543
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
544

545
        _metric_list = DEFAULT_METRIC_REGISTRY[self._config.output_type]
546
        if self._config.metric_list is None:
547
            # TODO: handle this in TaskConfig.__post_init__ ?
548
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
549
550
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._aggregation_list[metric_name] = get_default_aggregation(
lintangsutawika's avatar
lintangsutawika committed
551
                    metric_name
haileyschoelkopf's avatar
haileyschoelkopf committed
552
553
                )
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
554
555
556
557
558
559
560
561
562
        else:
            for metric_config in self._config.metric_list:
                assert "metric" in metric_config
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key not in ["metric", "aggregation", "higher_is_better"]
                }
haileyschoelkopf's avatar
haileyschoelkopf committed
563
564
                self._metric_fn_list[metric_name] = get_metric(metric_name)
                self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
565

566
                if "aggregation" in metric_config:
567
                    agg_name = metric_config["aggregation"]
568
                    if type(agg_name) == str:
haileyschoelkopf's avatar
haileyschoelkopf committed
569
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
570
571
572
573
                    elif callable(agg_name):
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
574
                else:
575
576

                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
haileyschoelkopf's avatar
haileyschoelkopf committed
577
                    metric_agg = get_default_aggregation(metric_name)
578
                    eval_logger.warning(
579
580
581
                        f"metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
582
                    )
583
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
584

585
586
587
588
589
590
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
591
592
                        f"metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
593
                        f"higher_is_better={is_higher_better(metric_name)}"
594
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
595
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
596

597
        self.download(self._config.dataset_kwargs)
598
599
600
        self._training_docs = None
        self._fewshot_docs = None

lintangsutawika's avatar
lintangsutawika committed
601
        if self._config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
602
            self._filters = []
lintangsutawika's avatar
lintangsutawika committed
603
604
605
606
607
608
609
610
            for filter_config in self._config.filter_list:
                for filter_pipeline in filter_config:
                    filter_name = filter_config["name"]
                    filter_functions = filter_config["filter"]
                    components = []
                    for function in filter_functions:
                        kwargs = {
                            key: function[key] for key in function if key != "function"
lintangsutawika's avatar
lintangsutawika committed
611
612
613
                        }
                        components.append([function["function"], kwargs])
                    filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
614
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
615
        else:
616
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
617
618

        if self._config.use_prompt is not None:
lintangsutawika's avatar
lintangsutawika committed
619
            eval_logger.info(f"loading prompt {self._config.use_prompt}")
620
            self.prompt = get_prompt(
lintangsutawika's avatar
lintangsutawika committed
621
622
                self._config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
            )
623
624
625
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
626
627
628
        if self.fewshot_docs() is not None:
            self.sampler = samplers.Sampler(
                list(self.fewshot_docs()), self, rnd=random.Random()
629
            )
630

631
632
633
634
635
636
637
638
    def download(self, dataset_kwargs=None):

        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
    def has_training_docs(self):
        if self._config.training_split is not None:
            return True
        else:
            return False

    def has_validation_docs(self):
        if self._config.validation_split is not None:
            return True
        else:
            return False

    def has_test_docs(self):
        if self._config.test_split is not None:
            return True
        else:
            return False

    def training_docs(self):
        if self._config.training_split is not None:
            return self.dataset[self._config.training_split]

    def validation_docs(self):
        if self._config.validation_split is not None:
            return self.dataset[self._config.validation_split]

    def test_docs(self):
        if self._config.test_split is not None:
            return self.dataset[self._config.test_split]

669
    def fewshot_docs(self):
670
        if self._config.fewshot_split is not None:
671
            return self.dataset[self._config.fewshot_split]
672
673
674
        else:
            if self._config.num_fewshot > 0:
                eval_logger.warning(
haileyschoelkopf's avatar
haileyschoelkopf committed
675
                    f"Task '{self._config.task}': "
676
677
678
679
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
680

681
682
683
684
685
686
687
    def should_decontaminate(self):
        return self._config.should_decontaminate

    def doc_to_decontamination_query(self, doc):
        if self._config.should_decontaminate:
            return utils.apply_template(self._config.doc_to_decontamination_query, doc)

688
689
690
691
692
693
694
695
696
697
698
699
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
700
701
702

        if self.prompt is not None:
            doc_to_text = self.prompt
703
704
        else:
            doc_to_text = self._config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
705

706
707
        if type(doc_to_text) == str:
            return utils.apply_template(doc_to_text, doc)
708
        elif callable(doc_to_text):
709
710
711
            return doc_to_text(doc)
        if hasattr(doc_to_text, "apply"):
            return doc_to_text.apply(doc)[0]
712
        else:
713
            print(type(doc_to_text))
714
            raise TypeError
715
716

    def doc_to_target(self, doc):
717
718
719

        if self.prompt is not None:
            doc_to_target = self.prompt
720
721
722
        else:
            doc_to_target = self._config.doc_to_target

723
724
        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
725
        elif callable(doc_to_target):
726
727
728
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
729
730
        else:
            raise TypeError
731

732
    def gold_alias(self, doc):
733
734
735
736
737
        # returns a version of the gold target answer to a document,
        # which should be passed into metric for scoring as the ground truth.

        # in multiple_choice tasks, this should be castable to an int corresponding to the index
        # within the answer choices, while doc_to_target is the string version of {{answer_choices[gold]}}.
lintangsutawika's avatar
lintangsutawika committed
738
        if self._config.gold_alias is not None:
739
740
            doc_to_target = self._config.gold_alias
        else:
lintangsutawika's avatar
lintangsutawika committed
741
            return self.doc_to_target(doc)
742
743
744
745
746
747
748
749
750
751

        if type(doc_to_target) == str:
            return utils.apply_template(doc_to_target, doc)
        elif callable(doc_to_target):
            return doc_to_target(doc)
        elif hasattr(doc_to_target, "apply"):
            return doc_to_target.apply(doc)[1]
        else:
            raise TypeError

752
753
    def construct_requests(self, doc, ctx, **kwargs):

754
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
755
            arguments = (ctx, self.doc_to_target(doc))
756
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
757
            arguments = (self.doc_to_target(doc),)
758
        elif self.OUTPUT_TYPE == "multiple_choice":
759
760
            # we pass the user-defined answer_choices var (in aliases) and translate the result to a Python list.
            # TODO: any cleaner way to do this?
761
            choices = self.create_choices(doc)
762

763
            request_list = [
764
765
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
766
                    doc=doc,
767
                    arguments=(ctx, " {}".format(choice)),
768
                    idx=i,
769
770
                    **kwargs,
                )
lintangsutawika's avatar
lintangsutawika committed
771
                for i, choice in enumerate(choices)
772
            ]
773
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
774
            if "acc_mutual_info" in self._metric_fn_list.keys():
775
776
777
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
778
                # here mutual info refers to calculating
779
780
781
782
783
784
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
785
                            doc=doc,
786
787
788
789
                            arguments=("", "{}".format(choice)),
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
790
                        for i, choice in enumerate(choices)
791
792
793
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
794

795
        elif self.OUTPUT_TYPE == "greedy_until":
796
            arguments = (ctx, self._config.generation_kwargs)
lintangsutawika's avatar
lintangsutawika committed
797

798
799
800
801
802
803
        elif self.OUTPUT_TYPE == "winograd_schema":
            # similar to multiple_choice task type except each request contains
            # multiple differing contexts with the same continuation

            contexts = self.create_choices(doc)
            choice = self.doc_to_target(doc)
804

805
806
807
808
809
810
811
812
813
814
            request_list = [
                Instance(
                    request_type="loglikelihood",
                    doc=doc,
                    arguments=(context, " {}".format(choice)),
                    idx=i,
                    **kwargs,
                )
                for i, context in enumerate(contexts)
            ]
815

816
817
            return request_list

lintangsutawika's avatar
lintangsutawika committed
818
        return Instance(
lintangsutawika's avatar
lintangsutawika committed
819
820
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
821
822
823

    def process_results(self, doc, results):

lintangsutawika's avatar
lintangsutawika committed
824
825
826
        # if callable(self._config.process_results):
        #     return self._config.process_results(doc, results)

827
        result_dict = {}
828
        use_metric = list(self._metric_fn_list.keys())
829
830
831
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
832
833
834
835
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
836
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
837
            (loglikelihood,) = results
838
839
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
840
            return {
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
856
            }
857
        elif self.OUTPUT_TYPE == "multiple_choice":
858
859

            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
860
861
862
863
864
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

865
            # retrieve choices in List[str] form, to compute choice lengths, etc.
866
            choices = self.create_choices(doc)
867
868
            if (
                2 * len(choices) == len(lls)
869
                and "acc_mutual_info" in self._metric_fn_list.keys()
870
871
872
873
874
875
876
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
                assert len(lls_unconditional) == len(choices)
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
877

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
878
879
            pred = np.argmax(lls)

880
            acc = 1.0 if np.argmax(lls) == gold else 0.0
881
882
            completion_len = np.array([float(len(i)) for i in choices])
            acc_norm = 1.0 if np.argmax(lls / completion_len) == gold else 0.0
883
884

            result_dict = {
885
                **({"acc": acc} if "acc" in use_metric else {}),
haileyschoelkopf's avatar
haileyschoelkopf committed
886
887
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
888
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
889
890
            }

891
            if "exact_match" in self._metric_fn_list.keys():
892
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
lintangsutawika's avatar
lintangsutawika committed
893
                is_greedy = is_greedy[gold]  # take value for the gold answer
894
895
                result_dict["exact_match"] = int(is_greedy)

896
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
897
898
899
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
900
901
902
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
        elif self.OUTPUT_TYPE == "winograd_schema":

            lls, is_greedy = zip(*results)
            if self._config.gold_alias is not None:
                gold = int(self.gold_alias(doc))
            else:
                gold = int(self.doc_to_target(doc))

            pred = np.argmax(lls)
            acc = 1.0 if np.argmax(lls) == gold else 0.0

            result_dict = {
                **({"acc": acc} if "acc" in use_metric else {}),
            }

918
919
920
        elif self.OUTPUT_TYPE == "greedy_until":

            if self._config.gold_alias is not None:
921
                gold = self.gold_alias(doc)
922
923
924
            else:
                gold = self.doc_to_target(doc)

925
            for key, result in zip(self._metric_fn_list.keys(), results):
haileyschoelkopf's avatar
haileyschoelkopf committed
926
                _dict = self._metric_fn_list[key](
haileyschoelkopf's avatar
haileyschoelkopf committed
927
928
929
                    references=[gold],
                    predictions=[result],
                    **self._metric_fn_kwargs[key],
930
                )
931

lintangsutawika's avatar
lintangsutawika committed
932
                result_dict = {**result_dict, **_dict}
933
        else:
lintangsutawika's avatar
lintangsutawika committed
934
935
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
936
                "'loglikelihood', 'loglikelihood_rolling', 'greedy_until', 'multiple_choice' or 'winograd_schema' ",
937
            )
938
939
940
941
942
943
944

        return result_dict

    def aggregation(self):
        return self._aggregation_list

    def higher_is_better(self):
haileyschoelkopf's avatar
haileyschoelkopf committed
945
        return self._higher_is_better
946
947
948
949
950
951
952
953
954
955


class MultipleChoiceTask(Task):

    OUTPUT_TYPE: str = "loglikelihood"

    def doc_to_target(self, doc):
        return " " + doc["choices"][doc["gold"]]

    def construct_requests(self, doc, ctx, **kwargs):
956
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
957
958
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
959
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
960
                doc=doc,
961
                arguments=(ctx, " {}".format(choice)),
962
                idx=i,
963
964
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
965
966
            for i, choice in enumerate(doc["choices"])
        ]
967
968

    def process_results(self, doc, results):
lintangsutawika's avatar
lintangsutawika committed
969
970
971
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

    def higher_is_better(self):
        return {
            "acc": True,
            "acc_norm": True,
        }

    def aggregation(self):
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
996
class PerplexityTask(Task):
997
998
999
1000
1001
1002
1003
1004
1005
1006

    OUTPUT_TYPE = "loglikelihood_rolling"

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

lintangsutawika's avatar
lintangsutawika committed
1007
    def fewshot_context(self, doc, num_fewshot, rnd=None):
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."

        return ""

    def higher_is_better(self):
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

    def doc_to_text(self, doc):
        return ""

    def doc_to_target(self, doc):
        return doc

    def construct_requests(self, doc, ctx, **kwargs):
        assert not ctx

lintangsutawika's avatar
lintangsutawika committed
1036
1037
1038
1039
1040
1041
1042
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1043
1044
1045

    def process_results(self, doc, results):
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1046
1047
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

    def aggregation(self):
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
    def count_bytes(cls, doc):
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))