utils.py 18.4 KB
Newer Older
sdtblck's avatar
sdtblck committed
1
import os
Leo Gao's avatar
Leo Gao committed
2
import re
Stephen Hogg's avatar
Stephen Hogg committed
3
import sys
4
5
6
7
8
9
import yaml
import inspect
import pathlib
import functools
import subprocess
import collections
lintangsutawika's avatar
lintangsutawika committed
10
import importlib.util
gakada's avatar
gakada committed
11
import fnmatch
12

Ethan Smith's avatar
Ethan Smith committed
13
from typing import Iterator, List, Literal, Union
14

15
import gc
16
import torch
haileyschoelkopf's avatar
haileyschoelkopf committed
17
import transformers
lintangsutawika's avatar
lintangsutawika committed
18
import numpy as np
sdtblck's avatar
sdtblck committed
19

20
from jinja2 import BaseLoader, Environment, StrictUndefined
21
from itertools import islice
sdtblck's avatar
sdtblck committed
22

23
import logging
lintangsutawika's avatar
lintangsutawika committed
24

25
26
27
28
29
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
30
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
31

32
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
33
34


35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
58
59
60
61
62
63
64
65
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
    return arg


Jason Phang's avatar
gpt3  
Jason Phang committed
66
67
68
69
70
71
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
72
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
73
74
    if not args_string:
        return {}
75
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
76
77
78
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
79
    return args_dict
Leo Gao's avatar
Leo Gao committed
80

Fabrizio Milo's avatar
Fabrizio Milo committed
81

Leo Gao's avatar
Leo Gao committed
82
83
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
84
        yield from iter
Leo Gao's avatar
Leo Gao committed
85
86


Ethan Smith's avatar
Ethan Smith committed
87
def chunks(iter, n: int = 0, fn=None):
Leo Gao's avatar
Leo Gao committed
88
    arr = []
89
    for i, x in enumerate(iter):
Leo Gao's avatar
Leo Gao committed
90
        arr.append(x)
91
        if len(arr) == (fn(i, iter) if fn else n):
Leo Gao's avatar
Leo Gao committed
92
93
            yield arr
            arr = []
Fabrizio Milo's avatar
Fabrizio Milo committed
94
95
96
97

    if arr:
        yield arr

Leo Gao's avatar
Leo Gao committed
98

99
100
101
102
103
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
104

105
106
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
107

gakada's avatar
gakada committed
108
class MultiChoice:
Ethan Smith's avatar
Ethan Smith committed
109
    def __init__(self, choices) -> None:
gakada's avatar
gakada committed
110
111
112
        self.choices = choices

    # Simple wildcard support (linux filename patterns)
Ethan Smith's avatar
Ethan Smith committed
113
    def __contains__(self, values) -> bool:
gakada's avatar
gakada committed
114
        for value in values.split(","):
115
116
117
118
            if len(fnmatch.filter(self.choices, value)) == 0:
                eval_logger.info(f"Available tasks to choose:")
                for choice in self.choices:
                    eval_logger.info(f"  - {choice}")
119
                raise ValueError("'{}' is not in task list".format(value))
gakada's avatar
gakada committed
120
121
        return True

Ethan Smith's avatar
Ethan Smith committed
122
    def __iter__(self) -> Iterator:
gakada's avatar
gakada committed
123
124
125
126
127
128
129
        for choice in self.choices:
            yield choice


# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
130
131
132
    if type(patterns) == str:
        patterns = [patterns]

gakada's avatar
gakada committed
133
134
135
136
137
138
139
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


lintangsutawika's avatar
lintangsutawika committed
140
141
142
143
144
145
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
146
147
148
149
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
150
151
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
152
    string = re.sub(r" (['.,])", r"\1", string)
153
154
155
    return string


Jason Phang's avatar
Jason Phang committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
183
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
184
185
186
187
188
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
189

Jason Phang's avatar
Jason Phang committed
190
        yield (
lintangsutawika's avatar
lintangsutawika committed
191
192
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
193
194
195
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
196

Leo Gao's avatar
Leo Gao committed
197
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
198
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
199
    a, b = pair
200
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
201

Jason Phang's avatar
Jason Phang committed
202

203
class Reorderer:
Ethan Smith's avatar
Ethan Smith committed
204
    def __init__(self, arr, fn) -> None:
205
206
207
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
208
209
210
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
211
212
213
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
214

215
216
    def get_reordered(self):
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
217

218
219
220
221
222
    def get_original(self, newarr):
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
223
            for ind in inds:
224
225
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
226

227
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
228

229
230
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
231

haileyschoelkopf's avatar
haileyschoelkopf committed
232
233
234
235
236
237
238
class Grouper:
    """
    takes an array `arr` and function `fn` and returns a dictionary
    with keys fn(ob) for each ob in `arr` and with values `self.arr[key]` a list of all
    objects in `arr` satisfying `key == fn(ob)`.
    """

Ethan Smith's avatar
Ethan Smith committed
239
    def __init__(self, arr, fn) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        # self.orig_arr = arr
        self.size = len(arr)
        arr = list(enumerate(arr))

        def group_return_dict(arr, fn):
            res = collections.defaultdict(list)

            for ob in arr:
                res[fn(ob)].append(ob)
            return res

        arr = group_return_dict(arr, lambda x: fn(x[1]))

        # self.arr has format Dict[Tuple[int, <entry from orig. arr>]]
        self.arr = arr
        self._grouped = None

    def get_grouped(self):
        # return the contents but not indices for our grouped dict.
        if self._grouped:
            return self._grouped
        grouped = {}
        for key in self.arr.keys():
            # drop the index from each element of self.arr
            grouped[key] = [y[1] for y in self.arr[key]]
        self._grouped = grouped
        return grouped

    def get_original(self, grouped_dict):
        # take in a grouped dictionary with e.g. results for each key listed
        # in the same order as the instances in `self.arr`, and
        # return the results in the same (single list) order as `self.orig_arr`.
        res = [None] * self.size
        cov = [False] * self.size
        # orig = [None] * self.size

        assert grouped_dict.keys() == self.arr.keys()

        for key in grouped_dict.keys():
            for (ind, _), v in zip(self.arr[key], grouped_dict[key]):
                res[ind] = v
                cov[ind] = True
                # orig[ind] = _

        assert all(cov)
        # assert orig == self.orig_arr

        return res


Ethan Smith's avatar
Ethan Smith committed
290
def make_table(result_dict, column: str = "results"):
291
292
293
    """Generate table of results."""
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

lintangsutawika's avatar
lintangsutawika committed
294
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
295
296
297
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
298

299
300
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
lintangsutawika's avatar
lintangsutawika committed
301
302
303
304
305
306
307
308
309
    md_writer.headers = [
        column_name,
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
lintangsutawika's avatar
lintangsutawika committed
310
    latex_writer.headers = [
lintangsutawika's avatar
lintangsutawika committed
311
        column_name,
lintangsutawika's avatar
lintangsutawika committed
312
313
314
315
316
317
318
        "Version",
        "Filter",
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
319
320
321

    values = []

lintangsutawika's avatar
lintangsutawika committed
322
    for k, dic in result_dict[column].items():
323
        version = result_dict["versions"][k]
324
325
326
327

        if "alias" in dic:
            k = dic.pop("alias")

328
329
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
330
331
332
            if m.endswith("_stderr"):
                continue

333
334
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
335
                values.append([k, version, f, m, "%.4f" % v, "±", "%.4f" % se])
336
            else:
337
                values.append([k, version, f, m, "%.4f" % v, "", ""])
338
339
340
341
342
343
344
345
346
347
348
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


349
350
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
351
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
352
353
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
354

355
356
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
357
358
359
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
360
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
361
362
                "lm-evaluation-harness!"
            )
363
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
364

365
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
366

Fabrizio Milo's avatar
Fabrizio Milo committed
367

Stephen Hogg's avatar
Stephen Hogg committed
368
369
370
371
372
373
374
375
376
@positional_deprecated
def find_test_root(start_path: pathlib.Path) -> pathlib.Path:
    """
    Search upward in the directory tree to a maximum of three layers
    to find and return the package root (containing the 'tests' folder)
    """
    cur_path = start_path.resolve()
    max_layers = 3
    for _ in range(max_layers):
Fabrizio Milo's avatar
Fabrizio Milo committed
377
        if (cur_path / "tests" / "test_version_stable.py").exists():
Stephen Hogg's avatar
Stephen Hogg committed
378
379
380
            return cur_path
        else:
            cur_path = cur_path.parent.resolve()
Fabrizio Milo's avatar
Fabrizio Milo committed
381
382
383
384
    raise FileNotFoundError(
        f"Unable to find package root within {max_layers} upwards" + f"of {start_path}"
    )

Stephen Hogg's avatar
Stephen Hogg committed
385
386

@positional_deprecated
387
def run_task_tests(task_list: List[str]):
Stephen Hogg's avatar
Stephen Hogg committed
388
389
390
    """
    Find the package root and run the tests for the given tasks
    """
jon-tow's avatar
jon-tow committed
391
392
    import pytest

393
    package_root = find_test_root(start_path=pathlib.Path(__file__))
Fabrizio Milo's avatar
Fabrizio Milo committed
394
395
396
397
398
399
400
    task_string = " or ".join(task_list)
    args = [
        f"{package_root}/tests/test_version_stable.py",
        f"--rootdir={package_root}",
        "-k",
        f"{task_string}",
    ]
Stephen Hogg's avatar
Stephen Hogg committed
401
402
403
    sys.path.append(str(package_root))
    pytest_return_val = pytest.main(args)
    if pytest_return_val:
Fabrizio Milo's avatar
Fabrizio Milo committed
404
405
406
        raise ValueError(
            f"Not all tests for the specified tasks ({task_list}) ran successfully! Error code: {pytest_return_val}"
        )
407
408


409
410
411
412
413
414
def get_git_commit_hash():
    """
    Gets the git commit hash of your current repo (if it exists).
    Source: https://github.com/EleutherAI/gpt-neox/blob/b608043be541602170bfcfb8ec9bf85e8a0799e0/megatron/neox_arguments/neox_args.py#L42
    """
    try:
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
415
        git_hash = subprocess.check_output(["git", "describe", "--always"]).strip()
416
        git_hash = git_hash.decode()
417
418
    except subprocess.CalledProcessError or FileNotFoundError:
        # FileNotFoundError occurs when git not installed on system
419
420
421
422
        git_hash = None
    return git_hash


lintangsutawika's avatar
lintangsutawika committed
423
424
425
426
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
427
428
429
430
    *module_name, function_name = function_name.split(".")
    if type(module_name) == list:
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
431
432
433
434
435
436
437
438

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
439

lintangsutawika's avatar
lintangsutawika committed
440
# Add the import_function constructor to the YAML loader
lintangsutawika's avatar
lintangsutawika committed
441
yaml.add_constructor("!function", import_function)
lintangsutawika's avatar
lintangsutawika committed
442
443


444
445
446
447
448
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None):

    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
449

lintangsutawika's avatar
lintangsutawika committed
450
451
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

        if type(include_path) == str:
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:

            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
                included_yaml_config = load_yaml_config(path)
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
483
484


Ethan Smith's avatar
Ethan Smith committed
485
def regex_replace(string, pattern, repl, count: int = 0):
486
487
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
488

lintangsutawika's avatar
lintangsutawika committed
489

490
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
491
env.filters["regex_replace"] = regex_replace
492
493


baberabb's avatar
baberabb committed
494
def apply_template(template: str, doc: dict) -> str:
495
496
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
497
498


499
500
501
502
def create_iterator(raw_iterator, rank, world_size, limit=None):
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
503
504
505
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
506
507


haileyschoelkopf's avatar
haileyschoelkopf committed
508
509
510
511
512
def pad_and_concat(
    max_length: int,
    tensors: List[torch.Tensor],
    padding_side: Literal["right", "left"] = "right",
):
haileyschoelkopf's avatar
haileyschoelkopf committed
513
514
515
516
    """
    Method for padding a list of tensors given the maximum tensor
    length in the batch. Used for batching inputs and continuations in
    seq2seq models.
lintangsutawika's avatar
lintangsutawika committed
517
    """
haileyschoelkopf's avatar
haileyschoelkopf committed
518
519
520
    assert (
        padding_side == "left" or padding_side == "right"
    ), f"Unrecognized padding type: '{padding_side}' not 'left' or 'right'"
haileyschoelkopf's avatar
haileyschoelkopf committed
521

lintangsutawika's avatar
lintangsutawika committed
522
    for i, tensor in enumerate(tensors):
523
524
        if len(tensor.shape) == 2:
            tensor = tensor.squeeze(0)  # squeeze, in case passed [1, seq] size
lintangsutawika's avatar
lintangsutawika committed
525
526
        tensor_len = tensor.shape[0]
        if tensor_len < max_length:
haileyschoelkopf's avatar
haileyschoelkopf committed
527
528
529
            if padding_side == "right":
                # right-pad
                tensors[i] = torch.cat(
haileyschoelkopf's avatar
haileyschoelkopf committed
530
531
532
533
534
535
536
537
538
539
                    [
                        tensor,  # [seq]
                        torch.zeros(
                            max_length - tensor_len,
                            dtype=torch.long,
                            device=tensor.device,
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                ).unsqueeze(0)
haileyschoelkopf's avatar
haileyschoelkopf committed
540
541
542
543
            else:
                # left-pad
                tensors[i] = torch.cat(
                    [
544
                        torch.zeros(
haileyschoelkopf's avatar
haileyschoelkopf committed
545
                            max_length - tensor_len,
546
547
                            dtype=torch.long,
                            device=tensor.device,
haileyschoelkopf's avatar
haileyschoelkopf committed
548
                        ),  # [padding_length - seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
549
                        tensor,  # [seq]
haileyschoelkopf's avatar
haileyschoelkopf committed
550
551
552
                    ],
                    dim=0,
                ).unsqueeze(0)
lintangsutawika's avatar
lintangsutawika committed
553
554
555
        else:
            tensors[i] = tensor.unsqueeze(0)

haileyschoelkopf's avatar
haileyschoelkopf committed
556
    return torch.cat(tensors, dim=0)
haileyschoelkopf's avatar
haileyschoelkopf committed
557
558


Ethan Smith's avatar
Ethan Smith committed
559
def clear_torch_cache() -> None:
560
561
    gc.collect()
    torch.cuda.empty_cache()
haileyschoelkopf's avatar
haileyschoelkopf committed
562
563


lintangsutawika's avatar
lintangsutawika committed
564
565
566
567
568
569
570
571
572
573
def get_dtype(dtype: Union[str, torch.dtype]) -> torch.dtype:
    """Converts `dtype` from `str` to torch.dtype when possible. Does not use an instantiated HF AutoConfig"""
    if isinstance(dtype, str) and dtype != "auto":
        # Convert `str` args torch dtype: `float16` -> `torch.float16`
        _torch_dtype = getattr(torch, dtype)
    else:
        _torch_dtype = dtype
    return _torch_dtype


haileyschoelkopf's avatar
haileyschoelkopf committed
574
# Multi-token stopping criteria
haileyschoelkopf's avatar
haileyschoelkopf committed
575
576
577
578
579
580
581
582
583
class MultiTokenEOSCriteria(transformers.StoppingCriteria):
    """Criteria to stop on the specified multi-token sequence."""

    def __init__(
        self,
        sequence: str,
        tokenizer: transformers.PreTrainedTokenizer,
        initial_decoder_input_length: int,
        batch_size: int,
Ethan Smith's avatar
Ethan Smith committed
584
    ) -> None:
haileyschoelkopf's avatar
haileyschoelkopf committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
        self.initial_decoder_input_length = initial_decoder_input_length
        self.done_tracker = [False] * batch_size
        self.sequence = sequence
        self.sequence_ids = tokenizer.encode(sequence, add_special_tokens=False)
        self.sequence_id_len = len(self.sequence_ids)
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs) -> bool:
        # For efficiency, we compare the last n tokens where n is the number of tokens in the stop_sequence
        lookback_ids_batch = input_ids[:, self.initial_decoder_input_length :][
            :, -self.sequence_id_len :
        ]

        lookback_tokens_batch = self.tokenizer.batch_decode(lookback_ids_batch)

        for i, done in enumerate(self.done_tracker):
            if not done:
                self.done_tracker[i] = self.sequence in lookback_tokens_batch[i]
        return False not in self.done_tracker


def stop_sequences_criteria(
    tokenizer: transformers.PreTrainedTokenizer,
    stop_sequences: List[str],
    initial_decoder_input_length: int,
    batch_size: int,
) -> transformers.StoppingCriteriaList:
    return transformers.StoppingCriteriaList(
        [
            *[
                MultiTokenEOSCriteria(
                    sequence, tokenizer, initial_decoder_input_length, batch_size
                )
                for sequence in stop_sequences
            ],
        ]
    )