huggingface.py 65.2 KB
Newer Older
1
2
from __future__ import annotations

3
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
4
import logging
5
import os
Baber Abbasi's avatar
Baber Abbasi committed
6
from collections.abc import Iterator, Sequence
Jeevan's avatar
Jeevan committed
7
from datetime import timedelta
8
from pathlib import Path
Baber Abbasi's avatar
Baber Abbasi committed
9
from typing import TYPE_CHECKING, Any, Literal
10

11
import jinja2
12
import torch
13
import torch.nn.functional as F
14
import transformers
Jeevan's avatar
Jeevan committed
15
16
17
18
19
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
20
from accelerate.utils import get_max_memory
21
from huggingface_hub import HfApi
22
from packaging import version
Baber Abbasi's avatar
Baber Abbasi committed
23
from packaging.version import parse as vparse
24
from tqdm import tqdm
25
26
27
28
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
29
30

from lm_eval import utils
31
from lm_eval.api.model import TemplateLM
32
from lm_eval.api.registry import register_model
33
34
from lm_eval.models.utils import (
    Collator,
Baber's avatar
Baber committed
35
    bos_already_added,
36
    clear_torch_cache,
37
    configure_pad_token,
38
    get_dtype,
39
    handle_stop_sequences,
40
    pad_and_concat,
41
    postprocess_generated_text,
42
43
    stop_sequences_criteria,
)
44

45

46
if TYPE_CHECKING:
Baber Abbasi's avatar
Baber Abbasi committed
47
48
49
    from transformers.quantizers.auto import AutoQuantizationConfig

    from lm_eval.api.instance import Instance
50

Lintang Sutawika's avatar
Lintang Sutawika committed
51
eval_logger = logging.getLogger(__name__)
Baber Abbasi's avatar
Baber Abbasi committed
52
TOKENIZER_INFINITY = 1000000000000000019884624838656
53

lintangsutawika's avatar
lintangsutawika committed
54

55
@register_model("hf-auto", "hf", "huggingface")
56
class HFLM(TemplateLM):
Baber Abbasi's avatar
Baber Abbasi committed
57
    """An abstracted Huggingface model class. Enables usage with both models of
58
59
60
61
62
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

63
    AUTO_MODEL_CLASS = None
64
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
65

66
67
    def __init__(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
68
        pretrained: str | transformers.PreTrainedModel,
69
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
70
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
Baber Abbasi's avatar
Baber Abbasi committed
71
        revision: str | None = "main",
72
        subfolder: str = "",
Baber Abbasi's avatar
Baber Abbasi committed
73
74
75
76
77
        tokenizer: str
        | transformers.PreTrainedTokenizer
        | transformers.PreTrainedTokenizerFast
        | None = None,
        truncation: bool | None = False,
Baber Abbasi's avatar
Baber Abbasi committed
78
        logits_cache: bool = True,
Baber Abbasi's avatar
Baber Abbasi committed
79
80
81
82
83
84
85
86
87
        max_length: int | None = None,
        device: str | None = "cuda",
        dtype: str | torch.dtype | None = "auto",
        softmax_dtype: str | torch.dtype | None = None,
        mixed_precision_dtype: str | torch.dtype | None = None,
        batch_size: int | str | None = 1,
        max_batch_size: int | None = 64,
        trust_remote_code: bool | None = False,
        use_fast_tokenizer: bool | None = True,
88
        add_bos_token: bool | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
89
        prefix_token_id: int | None = None,
90
        # arguments used for splitting a model across GPUs naively.
91
        # only used if `parallelize=True`.
Baber Abbasi's avatar
Baber Abbasi committed
92
93
94
95
        parallelize: bool | None = False,
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | os.PathLike | None = "./offload",
96
        # PEFT, delta weights and quantization options
Baber Abbasi's avatar
Baber Abbasi committed
97
98
99
100
101
        peft: str | None = None,
        delta: str | None = None,
        autogptq: bool | str | None = False,
        gptqmodel: bool | None = False,
        gguf_file: str | None = None,
102
103
        # end token for thinking, either the string or int token id.
        # splits to get response after this token (if provided).
Baber Abbasi's avatar
Baber Abbasi committed
104
        think_end_token: str | int | None = None,
105
        enable_thinking: bool | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
106
        chat_template_args: dict[str, Any] | None = None,
107
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
108
    ) -> None:
109
        super().__init__()
110
111
112
113
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
114
            )
Baber Abbasi's avatar
Baber Abbasi committed
115
116
117
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
118
119
120
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
121
            gpus = 0
122

123
        else:
124
125
126
127
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

Jeevan's avatar
Jeevan committed
128
129
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
130
131
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
132

kaixuanliu's avatar
kaixuanliu committed
133
134
135
136
137
            # Detect device count based on accelerator device type
            device_type = accelerator.device.type
            if "cuda" in device_type:
                gpus = torch.cuda.device_count()
            elif "npu" in device_type:
138
                gpus = torch.npu.device_count()
kaixuanliu's avatar
kaixuanliu committed
139
140
141
142
143
            elif "xpu" in device_type:
                gpus = torch.xpu.device_count()
            else:
                # Fallback to CUDA count for compatibility
                gpus = torch.cuda.device_count()
144

Nathan Habib's avatar
Nathan Habib committed
145
            # using one process with no model parallelism
146
147
148
149
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
150
                    + [f"cuda:{i}" for i in range(gpus)]
151
                    + ["mps", "mps:0"]
152
                    + [f"npu:{i}" for i in range(gpus)]
kaixuanliu's avatar
kaixuanliu committed
153
                    + [f"xpu:{i}" for i in range(gpus)]
154
                )
155
                if device and device in device_list:
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
172
            else:  # Parallelism managed by accelerate
173
174
175
176
177
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
178
179
180
181
182
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
183

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
184
            revision = str(revision)  # cast to string if not already one
185

186
            self._get_config(
187
188
189
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
190
                gguf_file=gguf_file,
191
                subfolder=subfolder,
192
193
            )

194
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
195
196
197
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
198

199
200
201
202
203
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
204
            subfolder=subfolder,
205
206
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
207
            gguf_file=gguf_file,
208
            add_bos_token=add_bos_token,
209
210
        )

211
212
213
214
215
216
217
        if (
            quantization_config := getattr(self.config, "quantization_config", None)
        ) is not None and isinstance(quantization_config, dict):
            from transformers.quantizers import AutoQuantizationConfig

            quantization_config = AutoQuantizationConfig.from_dict(quantization_config)

218
219
220
221
222
223
224
225
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
226
                gpus=gpus,
227
228
229
230
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
231
                delta=delta,
232
                autogptq=autogptq,
233
                gptqmodel=gptqmodel,
234
                gguf_file=gguf_file,
235
                quantization_config=quantization_config,
236
                subfolder=subfolder,
237
                **kwargs,
238
239
            )

240
        # access self._model through self.model property outside this method
241
242
243
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
244

245
246
247
248
249
        self.think_end_token = (
            int(think_end_token)
            if (isinstance(think_end_token, str) and think_end_token.isdigit())
            else think_end_token
        )
lintangsutawika's avatar
lintangsutawika committed
250
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
251
        self.logits_cache = logits_cache
252
        self.vocab_size = self.tokenizer.vocab_size
253
        # select (or create) a pad token to use
254
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
255
256
257
258
259
        self.chat_template_args = (
            chat_template_args or {} | dict(enable_thinking=enable_thinking)
            if enable_thinking is not None
            else {}
        )
260

261
        self.add_bos_token = add_bos_token
262
263
264
265
266
267
268
269
        if self.add_bos_token is None:
            if getattr(self.tokenizer, "add_bos_token", False):
                self.add_bos_token = True
                eval_logger.info(
                    f"Tokenizer has 'add_bos_token' attribute set -- using BOS token based on tokenizer configuration for model type '{self.config.model_type}'. To control explicitly, set `add_bos_token=True|False`"
                )
            else:
                self.add_bos_token = False
270

271
        self._max_length = max_length
272
273
274
275
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
276
277
278
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
279
280
281
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
282
283
284
285
286
        self.mixed_precision_dtype = (
            get_dtype(mixed_precision_dtype)
            if mixed_precision_dtype is not None
            else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
287
288
289
290
291
292
293

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
294

295
        if isinstance(pretrained, str):
Baber Abbasi's avatar
Baber Abbasi committed
296
297
298
            if (gpus >= 1 or str(self.device) == "mps") and not (
                parallelize or autogptq or hasattr(self, "accelerator")
            ):
Nathan Habib's avatar
Nathan Habib committed
299
                # TODO: can remove this whole snippet except in the mps case, perhaps?
Baber Abbasi's avatar
Baber Abbasi committed
300
301
302
303
304
305
306
307
308
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                    )
309
310
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
311
312
313
314
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
315
                        )
Nathan Habib's avatar
Nathan Habib committed
316
                    elif gpus > accelerator.num_processes:
317
318
319
320
321
322
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
323
324
325
326
327
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

328
                    self._device = torch.device(f"{accelerator.device}")
329
                    self.accelerator = accelerator
330

331
332
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
333
334
335
336
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
337
338
339
340
341
342
343
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
344

345
        self.custom_prefix_token_id = prefix_token_id
346
347
348
349
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
350

Nathan Habib's avatar
Nathan Habib committed
351
352
    def _get_accelerate_args(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
353
354
355
356
357
358
        parallelize: bool | None = None,
        device_map: str | None = "auto",
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | None = "./offload",
        gpus: int | None = None,
Nathan Habib's avatar
Nathan Habib committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
Baber Abbasi's avatar
Baber Abbasi committed
396
397
                max_memory_all_gpus.pop("cpu", None)
                if hasattr(self, "accelerator"):
Nathan Habib's avatar
Nathan Habib committed
398
399
400
401
402
403
404
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
Baber Abbasi's avatar
Baber Abbasi committed
405
406
407
                else:
                    max_memory_per_gpu_map = max_memory_all_gpus

Nathan Habib's avatar
Nathan Habib committed
408
            args["max_memory"] = max_memory_per_gpu_map
409
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
410
            eval_logger.info(
411
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

437
438
439
440
441
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

442
443
444
445
446
447
448
449
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

450
    @property
Baber Abbasi's avatar
Baber Abbasi committed
451
    def eot_token_id(self) -> int:
452
453
454
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

455
    @property
Baber Abbasi's avatar
Baber Abbasi committed
456
    def prefix_token_id(self) -> int:
457
458
459
460
461
462
463
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

464
    @property
Baber Abbasi's avatar
Baber Abbasi committed
465
    def max_length(self) -> int:
466
467
468
469
470
471
472
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
Baber Abbasi's avatar
Baber Abbasi committed
473
            if self.tokenizer.model_max_length == TOKENIZER_INFINITY:
474
475
476
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
477

478
    @property
Ethan Smith's avatar
Ethan Smith committed
479
    def max_gen_toks(self) -> int:
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
498
499
500
501
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

502
503
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
504
        config: transformers.PretrainedConfig | transformers.AutoConfig,
505
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
506
        trust_remote_code: bool | None = False,
507
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
508
509
        """Helper method during initialization.

510
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
511
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
512
513
514

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
515
        """
516

517
518
519
520
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
Baber Abbasi's avatar
Baber Abbasi committed
521
            if backend in ["causal", "seq2seq"]:
522
                self.backend = backend
523
            eval_logger.info(
524
                f"Overrode HF model backend type, and using type '{self.backend}'"
525
526
527
528
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
Baber Abbasi's avatar
Baber Abbasi committed
529
                getattr(config, "model_type", None)
530
531
532
533
534
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
535
                self.backend = "seq2seq"
536
                eval_logger.debug(f"Using model type '{self.backend}'")
537
            elif (
Baber Abbasi's avatar
Baber Abbasi committed
538
                getattr(config, "model_type", None) in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
539
            ):
540
                self.backend = "causal"
541
                eval_logger.debug(f"Using model type '{self.backend}'")
542
543
544
545
546
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
547
                        "Setting backend to causal"
548
549
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
550
551
552
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
553
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
554
                )
555

556
557
558
559
560
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
561
562
563
564
565
566

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
567
        gguf_file: str | None = None,
568
        subfolder: str = "",
569
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
570
        """Return the model config for HuggingFace models."""
571
572
573
574
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
575
            gguf_file=gguf_file,
576
            subfolder=subfolder,
577
578
579
580
581
        )

    def _create_model(
        self,
        pretrained: str,
Baber Abbasi's avatar
Baber Abbasi committed
582
583
584
        revision: str | None = "main",
        dtype: str | torch.dtype | None = "auto",
        trust_remote_code: bool | None = False,
585
586
587
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
Baber Abbasi's avatar
Baber Abbasi committed
588
589
590
591
592
        parallelize: bool | None = False,
        gpus: int | None = None,
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | None = "./offload",
593
        # PEFT, delta weights and quantization options
Baber Abbasi's avatar
Baber Abbasi committed
594
595
596
597
598
599
        peft: str | None = None,
        delta: str | None = None,
        autogptq: bool | str | None = False,
        gptqmodel: bool | None = False,
        gguf_file: str | None = None,
        quantization_config: AutoQuantizationConfig | None = None,
600
        subfolder: str = "",
601
602
        **kwargs,
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
603
        """Initializes an HF or HF-compatible PreTrainedModel from scratch
604
605
606
607
608
609
610
611
612
613
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

Baber Abbasi's avatar
Baber Abbasi committed
614
        model_kwargs = kwargs or {}
615

Nathan Habib's avatar
Nathan Habib committed
616
617
618
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
Baber Abbasi's avatar
Baber Abbasi committed
619
                device_map=kwargs.get("device_map"),
Nathan Habib's avatar
Nathan Habib committed
620
621
622
623
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
624
            )
Nathan Habib's avatar
Nathan Habib committed
625
        )
626

627
        if not autogptq and not gptqmodel:
Baber Abbasi's avatar
Baber Abbasi committed
628
629
            if model_kwargs.get("load_in_4bit"):
                assert vparse(transformers.__version__) >= vparse("4.30.0"), (
Baber Abbasi's avatar
Baber Abbasi committed
630
631
                    "load_in_4bit requires transformers >= 4.30.0"
                )
Baber Abbasi's avatar
Baber Abbasi committed
632
633
                if compute_dtype := model_kwargs.get("bnb_4bit_compute_dtype"):
                    model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(compute_dtype)
Nathan Habib's avatar
Nathan Habib committed
634

635
636
637
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
638
                torch_dtype=get_dtype(dtype),
639
                trust_remote_code=trust_remote_code,
640
                gguf_file=gguf_file,
641
                quantization_config=quantization_config,
642
                subfolder=subfolder,
643
644
645
                **model_kwargs,
            )
        else:
646
647
648
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
649
650
                )

651
652
653
654
655
656
657
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
Baber Abbasi's avatar
Baber Abbasi committed
658
                    ) from exception
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
Baber Abbasi's avatar
Baber Abbasi committed
677
                    ) from exception
678
679
680
681

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
682

683
684
685
686
687
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

688
        if peft:
689
690
691
            from peft import PeftModel
            from peft import __version__ as PEFT_VERSION

Baber Abbasi's avatar
Baber Abbasi committed
692
693
694
695
            if model_kwargs.get("load_in_4bit") and vparse(PEFT_VERSION) < vparse(
                "0.4.0"
            ):
                raise AssertionError("load_in_4bit requires peft >= 0.4.0")
696
697

            # Compatible with Gemma3 (multimodal) and old models
Janna's avatar
Janna committed
698
699
700
            if hasattr(self._model.config, "text_config") and hasattr(
                self._model.config.text_config, "vocab_size"
            ):
701
702
703
                vocab_size = self._model.config.text_config.vocab_size
            else:
                vocab_size = self._model.config.vocab_size
Janna's avatar
Janna committed
704

705
            if vocab_size != len(self.tokenizer):
706
                # resize model for LoRAs with added tokens
707
                eval_logger.info(
708
                    f"Model config indicates vocab_size='{vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
709
                )
710
                self._model.resize_token_embeddings(len(self.tokenizer))
711
712
713
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
Baber Abbasi's avatar
Baber Abbasi committed
729
730
731
732
                except KeyError as e:
                    raise KeyError(
                        f"Delta model is missing weights for layer: {name}"
                    ) from e
733
734
735
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
Baber Abbasi's avatar
Baber Abbasi committed
736
                    ) from e
737
738

            del _model_delta
739
740
741

    def _create_tokenizer(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
742
743
744
745
746
747
748
749
750
751
752
        pretrained: str | transformers.PreTrainedModel,
        tokenizer: str
        | transformers.PreTrainedTokenizer
        | transformers.PreTrainedTokenizerFast
        | None,
        revision: str | None = "main",
        trust_remote_code: bool | None = False,
        use_fast_tokenizer: bool | None = True,
        gguf_file: str | None = None,
        add_bos_token: bool | None = False,
        subfolder: str | None = "",
753
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
754
        """Helper method during initialization.
755
756
757
758

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
759
760
761
762
763
764
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
765
        if not tokenizer and gguf_file is not None:
766
767
768
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
769

770
771
772
        if add_bos_token:
            kwargs["add_bos_token"] = True

773
774
775
        if subfolder:
            kwargs["subfolder"] = subfolder

776
777
778
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
779
                    tokenizer, **kwargs
780
781
782
                )
            else:
                assert isinstance(
Baber Abbasi's avatar
Baber Abbasi committed
783
784
785
786
787
788
                    tokenizer,
                    (
                        transformers.PreTrainedTokenizer,
                        transformers.PreTrainedTokenizerFast,
                    ),
                )
789
790
791
792
793
794
795
796
797
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
798
                model_name, **kwargs
799
800
            )

Baber Abbasi's avatar
Baber Abbasi committed
801
    def _detect_batch_size(self, requests: Sequence | None = None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
802
803
804
805
806
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
807
808
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
809
810
        else:
            max_length = self.max_length
811
812
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
813

Benjamin Fattori's avatar
Benjamin Fattori committed
814
815
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
Baber Abbasi's avatar
Baber Abbasi committed
816
        def forward_batch(batch_size: int):
817
            if self.backend == "seq2seq":
818
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
819
820
821
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
822
823
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
824
825
826
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
827
828
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
829
830
831
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
832
            for _ in range(5):
833
834
835
836
837
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
838

Benjamin Fattori's avatar
Benjamin Fattori committed
839
840
            return batch_size

841
842
843
844
845
846
847
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
848

849
850
851
852
853
854
855
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
856
            clear_torch_cache()
857
858
            return batch_size

859
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
860
861
        return batch_size

baberabb's avatar
baberabb committed
862
    def tok_encode(
Baber Abbasi's avatar
Baber Abbasi committed
863
864
865
        self,
        string: str,
        add_special_tokens: bool | None = None,
866
867
        left_truncate_len: int | None = None,
        **kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
868
    ) -> list[int]:
Lintang Sutawika's avatar
Lintang Sutawika committed
869
870
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
871
872
873
874
875
876
        special_tokens_kwargs: dict = (
            {
                "add_special_tokens": self.add_bos_token
                if add_special_tokens is None
                else add_special_tokens
            }
877
878
879
            if self.backend == "causal"
            # otherwise the method explicitly defines the value
            else {"add_special_tokens": add_special_tokens}
880
881
            if isinstance(add_special_tokens, bool)
            else {}
882
        )
883

Lintang Sutawika's avatar
Lintang Sutawika committed
884
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
885

886
887
888
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
889

890
891
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
892
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
893
        self,
Baber Abbasi's avatar
Baber Abbasi committed
894
        strings: list[str],
lintangsutawika's avatar
lintangsutawika committed
895
        padding_side: str = "left",
Baber Abbasi's avatar
Baber Abbasi committed
896
        left_truncate_len: int | None = None,
897
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
898
    ) -> tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
899
900
901
902
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
903
        add_special_tokens = {}
904
        if self.backend == "causal":
Baber's avatar
Baber committed
905
906
907
908
909
910
            if bos_already_added(
                strings[0], getattr(self.tokenizer, "bos_token", None)
            ):
                add_special_tokens = {"add_special_tokens": False}
            else:
                add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
911
912
913

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
914
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
915
916
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
917
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
918
919
        )
        if left_truncate_len:
920
921
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
Baber Abbasi's avatar
Baber Abbasi committed
922
                eval_logger.warning(
923
924
925
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
926
927
928
929
930
931
932
933
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Baber Abbasi's avatar
Baber Abbasi committed
934
    def tok_decode(self, tokens: Iterator[list[str]], skip_special_tokens: bool = True):
Lintang Sutawika's avatar
Lintang Sutawika committed
935
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
936

Baber Abbasi's avatar
Baber Abbasi committed
937
938
939
940
941
942
    def _model_call(
        self,
        inps: torch.Tensor,
        attn_mask: torch.Tensor | None = None,
        labels: torch.Tensor | None = None,
    ) -> torch.Tensor:
943
        """
Baber Abbasi's avatar
Baber Abbasi committed
944

haileyschoelkopf's avatar
haileyschoelkopf committed
945
        :param inps: torch.Tensor
946
947
948
949
950
951
952
953
954
955
956
957
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
Baber Abbasi's avatar
Baber Abbasi committed
958
959
960
        with (
            torch.no_grad(),
            torch.autocast(
961
962
963
                device_type=self.device.type,
                dtype=self.mixed_precision_dtype,
                enabled=self.mixed_precision_dtype is not None,
Baber Abbasi's avatar
Baber Abbasi committed
964
965
966
967
968
969
970
971
972
973
974
975
976
977
            ),
        ):
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
                assert transformers.AutoModelForSeq2SeqLM == self.AUTO_MODEL_CLASS
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits

            assert self.AUTO_MODEL_CLASS in (
                transformers.AutoModelForCausalLM,
                transformers.AutoModelForVision2Seq,
            )
            return self.model(inps).logits
978

Baber Abbasi's avatar
Baber Abbasi committed
979
980
981
982
983
    def _model_generate(
        self,
        context,
        max_length: int,
        stop: list[str],
984
        **generation_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
985
    ) -> torch.Tensor:
Baber Abbasi's avatar
Baber Abbasi committed
986
        # temperature = 0.0 if not set
987
988
989
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
990
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
Baber Abbasi's avatar
Baber Abbasi committed
991
        do_sample = generation_kwargs.get("do_sample")
992
993
994
995
996

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
997
998
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
999
1000
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
1001
            self.tokenizer, stop, context.shape[1], context.shape[0]
1002
        )
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
        with torch.autocast(
            device_type=self.device.type,
            dtype=self.mixed_precision_dtype,
            enabled=self.mixed_precision_dtype is not None,
        ):
            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )
1016

Baber Abbasi's avatar
Baber Abbasi committed
1017
    def _select_cont_toks(
Baber Abbasi's avatar
Baber Abbasi committed
1018
1019
1020
1021
        self,
        logits: torch.Tensor,
        contlen: int | None = None,
        inplen: int | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
1022
    ) -> torch.Tensor:
1023
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1024
1025
1026
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
1027
1028
1029
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
1030
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1031
1032
1033
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1034
            # only discard right-padding.
1035
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
1036
1037
            logits = logits[:contlen]

1038
1039
        return logits

1040
    def loglikelihood_rolling(
Baber Abbasi's avatar
Baber Abbasi committed
1041
1042
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
1043
1044
1045
1046
1047
1048
1049
1050
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

1051
1052
1053
1054
1055
1056
1057
1058
1059
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
1060
        ):
Baber Abbasi's avatar
Baber Abbasi committed
1061
            rolling_token_windows: list[tuple[list[int], list[int]]] = list(
1062
1063
1064
1065
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
1066
                        prefix_token=self.prefix_token_id,
1067
1068
1069
1070
1071
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1072
1073

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1074
            windows = [(None,) + x for x in rolling_token_windows]
1075

1076
1077
1078
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1100
            )
1101
1102
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
1103

1104
1105
1106
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1107

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1123

1124
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1125

1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1139
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1140
1141
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1142

Ethan Smith's avatar
Ethan Smith committed
1143
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1144
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1145
        requests: list[tuple[tuple[str, str], list[int], list[int]]],
baberabb's avatar
baberabb committed
1146
        disable_tqdm: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1147
1148
        override_bs: int | None = None,
    ) -> list[tuple[float, bool]]:
1149
1150
1151
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1152
1153
        def _collate(req: tuple[tuple[str, str], list[int], list[int]]):
            """Defines the key for the sorted method."""
1154
1155
1156
1157
1158
1159
1160
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1161
            toks = req[1] + req[2]
1162
1163
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1164
1165
        def _lookup_one_token_cont(req: tuple[tuple[str, str], list[int], list[int]]):
            """Defines the key to group and lookup one-token continuations."""
Baber Abbasi's avatar
Baber Abbasi committed
1166
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1167
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1168
1169
1170
1171
1172
1173
1174
1175
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1176
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1177
1178
1179
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1180
1181
1182

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1183
1184
1185
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1186
1187
1188
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1189
1190
1191
1192
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1193
1194
1195
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1196
            else None
1197
1198
        )

Baber Abbasi's avatar
Baber Abbasi committed
1199
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1200
1201
1202
1203
1204
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1205
        for chunk in chunks:
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1225
                # how this all works (illustrated on a causal decoder-only setup):
1226
1227
1228
1229
1230
1231
1232
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1233
                if self.backend == "causal":
1234
1235
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1236
                        eval_logger.warning(
1237
1238
1239
1240
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1241
1242
1243
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1244
1245
                        device=self.device,
                    )
1246
                    (inplen,) = inp.shape
1247
                elif self.backend == "seq2seq":
1248
1249
1250
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1251
                        device=self.device,
1252
                    )
1253
                    (inplen,) = inp.shape
1254
1255
1256
1257

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1258
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1259
                        (continuation_enc)[-self.max_length :],
1260
1261
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1262
                        dtype=torch.long,
1263
1264
                        device=self.device,
                    )
1265
1266
                    (contlen,) = cont.shape

1267
1268
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1269
1270
1271
1272
1273
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1274

haileyschoelkopf's avatar
haileyschoelkopf committed
1275
1276
1277
1278
1279
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1280
1281
1282
1283

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1284

1285
1286
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1287
            if self.backend == "causal":
1288
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1289
1290
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1291
            elif self.backend == "seq2seq":
1292
                # TODO: left-pad encoder inps and mask?
1293
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1294
1295
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1296
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1297
1298
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1299
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1300
1301
1302
1303
1304
1305
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1306
1307

            multi_logits = F.log_softmax(
1308
1309
1310
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1311
            )  # [batch, padding_length (inp or cont), vocab]
1312

Baber Abbasi's avatar
Baber Abbasi committed
1313
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1314
1315
1316
1317
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1318
                # take only logits in the continuation
1319
                # (discard context toks if decoder-only ; discard right-padding)
1320
1321
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1322
                ctx_len = (
1323
                    inplen + (logits.shape[0] - padding_len_inp)
1324
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1325
1326
                    else None
                )
1327
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1328
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1329
1330
1331
1332

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1333
1334
1335
1336
1337
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
Baber Abbasi's avatar
Baber Abbasi committed
1338
                for request_str, cont_toks, logits in re_ord.get_cache(  # noqa
Baber Abbasi's avatar
Baber Abbasi committed
1339
1340
1341
1342
1343
1344
1345
1346
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1347
1348
1349
1350
1351
1352
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1365
1366
1367
1368
1369
1370
1371
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1372
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1373
1374

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1375

1376
1377
        return re_ord.get_original(res)

1378
    def generate_until(
Baber Abbasi's avatar
Baber Abbasi committed
1379
1380
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1381
        res = []
1382

Baber Abbasi's avatar
Baber Abbasi committed
1383
        def _collate(req: tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1384
            """Defines the key for the sorted method"""
1385
1386
1387
1388
1389
1390
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1391
1392
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1393

1394
1395
        pbar = tqdm(
            total=len(requests),
1396
            disable=(disable_tqdm or (self.rank != 0)),
1397
1398
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1399
        adaptive_batch_size = None
1400
1401
1402
1403
1404
1405
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1406
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1419

Baber Abbasi's avatar
Baber Abbasi committed
1420
1421
1422
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1423
1424
1425
1426
1427
1428
1429
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1430
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1431
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1432
1433
1434
1435
1436
1437
1438
1439
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1440
1441
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1442
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1443
                raise TypeError(
Baber Abbasi's avatar
Baber Abbasi committed
1444
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1445
                )
Baber Abbasi's avatar
Baber Abbasi committed
1446
            if "max_gen_toks" in kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
1447
1448
1449
1450
1451
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1452
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1453
1454
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1455
1456
1457
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1458
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1470

Baber Abbasi's avatar
Baber Abbasi committed
1471
1472
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1473

Baber Abbasi's avatar
Baber Abbasi committed
1474
1475
1476
1477
1478
1479
1480
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1481

Baber Abbasi's avatar
Baber Abbasi committed
1482
1483
1484
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1485
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1486
                    cont_toks = cont_toks[context_enc.shape[1] :]
1487

1488
1489
1490
1491
1492
1493
1494
1495
1496
                # Handle integer think_end_token: find last occurrence and strip tokens after it
                if isinstance(self.think_end_token, int):
                    think_token_indices = [
                        i
                        for i, token in enumerate(cont_toks)
                        if token == self.think_end_token
                    ]
                    if think_token_indices:
                        cont_toks = cont_toks[think_token_indices[-1] + 1 :]
1497

1498
                s = self.tok_decode(cont_toks)
Baber Abbasi's avatar
Baber Abbasi committed
1499

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
                # Strip leading whitespace if we removed thinking tokens
                if isinstance(self.think_end_token, int):
                    s = s.lstrip()

                # Apply post-processing: remove stop sequences and string-based thinking tokens
                s = postprocess_generated_text(
                    generation=s,
                    stop=until,
                    think_end_token=self.think_end_token
                    if isinstance(self.think_end_token, str)
                    else None,
                )
Baber Abbasi's avatar
Baber Abbasi committed
1512
1513
1514
1515
1516
1517
                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1518

1519
        pbar.close()
1520

Baber Abbasi's avatar
Baber Abbasi committed
1521
        return res
1522

Baber Abbasi's avatar
Baber Abbasi committed
1523
    def apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1524
        self, chat_history: list[dict[str, str]], add_generation_prompt: bool = True
Baber Abbasi's avatar
Baber Abbasi committed
1525
    ) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
1526
        """Method to apply a chat template to a list of chat history between user and model."""
1527
1528
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1529
1530
1531
1532
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1533
                **self.chat_template_args,
1534
1535
1536
1537
1538
1539
1540
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1541
1542
1543
1544
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1545
                **self.chat_template_args,
1546
1547
1548
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1549

1550
    def get_model_info(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
1551
        """Method to get Hugging Face model information for experiment reproducibility."""
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1572
                eval_logger.debug(
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info