huggingface.py 59.7 KB
Newer Older
1
import copy
2
import os
Jeevan's avatar
Jeevan committed
3
from datetime import timedelta
4
from pathlib import Path
KonradSzafer's avatar
KonradSzafer committed
5
from typing import Dict, List, Literal, Optional, Tuple, Union
6

7
import jinja2
8
import torch
9
import torch.nn.functional as F
10
import transformers
Jeevan's avatar
Jeevan committed
11
12
13
14
15
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
16
from accelerate.utils import get_max_memory
17
from huggingface_hub import HfApi
18
19
20
21
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
22
23
24
25
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
26
27

from lm_eval import utils
baberabb's avatar
baberabb committed
28
from lm_eval.api.instance import Instance
29
from lm_eval.api.model import TemplateLM
30
from lm_eval.api.registry import register_model
31
32
33
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
34
    configure_pad_token,
35
    get_dtype,
36
    handle_stop_sequences,
37
38
39
    pad_and_concat,
    stop_sequences_criteria,
)
40

41

42
eval_logger = utils.eval_logger
43

lintangsutawika's avatar
lintangsutawika committed
44

45
@register_model("hf-auto", "hf", "huggingface")
46
class HFLM(TemplateLM):
47
48
49
50
51
52
53
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

54
    AUTO_MODEL_CLASS = None
55
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
56

57
58
    def __init__(
        self,
59
        pretrained: Union[str, transformers.PreTrainedModel],
60
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
61
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
62
63
        revision: Optional[str] = "main",
        subfolder: Optional[str] = None,
64
65
66
67
68
69
70
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
71
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
72
        logits_cache: bool = True,
73
74
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
75
        dtype: Optional[Union[str, torch.dtype]] = "auto",
Benjamin Fattori's avatar
Benjamin Fattori committed
76
77
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
78
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
79
        use_fast_tokenizer: Optional[bool] = True,
80
        add_bos_token: Optional[bool] = False,
81
        prefix_token_id: Optional[int] = None,
82
        # arguments used for splitting a model across GPUs naively.
83
84
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
85
86
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
87
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
88
        # PEFT, delta weights and quantization options
89
        peft: Optional[str] = None,
90
        delta: Optional[str] = None,
91
        autogptq: Optional[Union[bool, str]] = False,
92
        gptqmodel: Optional[bool] = False,
93
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
94
    ) -> None:
95
        super().__init__()
96
97
98
99
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
100
            )
101
            assert not parallelize, "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
102
103
104
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
105
            gpus = 0
106

107
        else:
108
109
110
111
112
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
113
114
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
115
116
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
117

118
119
120
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
121
            # using one process with no model parallelism
122
123
124
125
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
126
                    + [f"cuda:{i}" for i in range(gpus)]
127
                    + ["mps", "mps:0"]
128
                    + [f"npu:{i}" for i in range(gpus)]
129
                )
130
                if device and device in device_list:
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
147
            else:  # Parallelism managed by accelerate
148
149
150
151
152
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
153
154
155
156
157
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
158

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
159
            revision = str(revision)  # cast to string if not already one
160
161
            # TODO: update this to be less of a hack once subfolder is fixed in HF
            revision = revision + ("/" + subfolder if subfolder is not None else "")
162

163
            self._get_config(
164
165
166
167
168
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
            )

169
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
170
171
172
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
173

174
175
176
177
178
179
180
181
182
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
        )

183
184
185
186
187
188
189
190
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
191
                gpus=gpus,
192
193
194
195
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
196
                delta=delta,
197
                autogptq=autogptq,
198
                gptqmodel=gptqmodel,
199
                **kwargs,
200
201
            )

202
        # access self._model through self.model property outside this method
203
204
205
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
206

lintangsutawika's avatar
lintangsutawika committed
207
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
208
        self.logits_cache = logits_cache
209
        self.vocab_size = self.tokenizer.vocab_size
210
        # select (or create) a pad token to use
211
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
212

213
        self.add_bos_token = add_bos_token
214
        if "gemma" in getattr(self.config, "model_type", ""):
215
            self.add_bos_token = True
216
            eval_logger.info(
217
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
218
219
            )

220
        self._max_length = max_length
221
222
223
224
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
225
226
227
228
229
230
231
232
233
234
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
235

236
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
237
238
239
240
241
242
243
244
245
246
247
248
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
249
250
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
251
252
253
254
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
255
                        )
Nathan Habib's avatar
Nathan Habib committed
256
                    elif gpus > accelerator.num_processes:
257
258
259
260
261
262
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
263
264
265
266
267
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

268
                    self._device = torch.device(f"{accelerator.device}")
269
                    self.accelerator = accelerator
270

271
272
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
273
274
275
276
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
277
278
279
280
281
282
283
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
284

285
        self.custom_prefix_token_id = prefix_token_id
286
287
288
289
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
290

Nathan Habib's avatar
Nathan Habib committed
291
292
    def _get_accelerate_args(
        self,
293
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
340
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
341
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
342
                else:
Nathan Habib's avatar
Nathan Habib committed
343
344
345
346
347
348
349
350
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
351
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
352
            eval_logger.info(
353
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

379
380
381
382
383
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

384
385
386
387
388
389
390
391
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

392
393
394
395
396
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

397
398
399
400
401
402
403
404
405
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

406
407
    @property
    def max_length(self):
408
409
410
411
412
413
414
415
416
417
418
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
419

420
    @property
Ethan Smith's avatar
Ethan Smith committed
421
    def max_gen_toks(self) -> int:
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
440
441
442
443
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

444
445
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
446
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
447
        backend: Literal["default", "causal", "seq2seq"] = "default",
448
449
450
451
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
452
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
453
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
454
455
456

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
457
        """
458

459
460
461
462
463
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
464
                self.backend = backend
465
            elif backend == "seq2seq":
466
                self.backend = backend
467
            eval_logger.info(
468
                f"Overrode HF model backend type, and using type '{self.backend}'"
469
470
471
472
473
474
475
476
477
478
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
479
                self.backend = "seq2seq"
480
                eval_logger.debug(f"Using model type '{self.backend}'")
481
482
483
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
484
                self.backend = "causal"
485
                eval_logger.debug(f"Using model type '{self.backend}'")
486
487
488
489
490
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
491
                        "Setting backend to causal"
492
493
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
494
495
496
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
497
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
498
                )
499

500
501
502
503
504
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
505
506
507
508
509
510
511

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
    ) -> None:
512
        """Return the model config for HuggingFace models"""
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
529
        gpus: Optional[int] = None,
530
531
532
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
533
        # PEFT, delta weights and quantization options
534
        peft: Optional[str] = None,
535
        delta: Optional[str] = None,
536
        autogptq: Optional[Union[bool, str]] = False,
537
        gptqmodel: Optional[bool] = False,
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
554
555
556
557
558
559
560
561
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
562
            )
Nathan Habib's avatar
Nathan Habib committed
563
        )
564

565
        if not autogptq and not gptqmodel:
566
567
568
569
570
571
572
            if model_kwargs.get("load_in_4bit", None):
                assert (
                    transformers.__version__ >= "4.30.0"
                ), "load_in_4bit requires transformers >= 4.30.0"
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
573
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
574
575
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
576

577
578
579
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
580
                torch_dtype=get_dtype(dtype),
581
582
583
584
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
        else:
585
586
587
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
588
589
                )

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
621

622
623
624
625
626
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

627
628
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
629
630
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
631
632
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
633
634
635
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
636
                self._model.resize_token_embeddings(len(self.tokenizer))
637
638
639
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """

        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    revision=revision,
                    trust_remote_code=trust_remote_code,
                    use_fast=use_fast_tokenizer,
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                model_name,
                revision=revision,
                trust_remote_code=trust_remote_code,
                use_fast=use_fast_tokenizer,
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
715
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
716
717
718
719
720
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
721
722
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
723
724
        else:
            max_length = self.max_length
725
726
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
727

Benjamin Fattori's avatar
Benjamin Fattori committed
728
729
730
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
731
            if self.backend == "seq2seq":
732
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
733
734
735
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
736
737
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
738
739
740
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
741
742
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
743
744
745
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
746
            for _ in range(5):
747
                out = F.log_softmax(self._model_call(test_batch, **call_kwargs), dim=-1)  # noqa: F841
lintangsutawika's avatar
lintangsutawika committed
748

Benjamin Fattori's avatar
Benjamin Fattori committed
749
750
            return batch_size

751
752
753
754
755
756
757
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
758

759
760
761
762
763
764
765
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
766
            clear_torch_cache()
767
768
            return batch_size

769
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
770
771
        return batch_size

baberabb's avatar
baberabb committed
772
773
774
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
775
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
776
777
778
779
780
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
781
        if add_special_tokens is None:
782
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
783
784
785
786
787
788
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
789

Lintang Sutawika's avatar
Lintang Sutawika committed
790
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
791

792
793
794
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
795

796
797
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
798
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
799
800
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
801
        padding_side: str = "left",
802
803
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
804
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
805
806
807
808
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
809
        add_special_tokens = {}
810
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
811
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
812
813
814

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
815
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
816
817
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
818
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
819
820
        )
        if left_truncate_len:
821
822
823
824
825
826
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
                eval_logger.warn(
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
827
828
829
830
831
832
833
834
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
835
836
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
837
838
839

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
840
        :param inps: torch.Tensor
841
842
843
844
845
846
847
848
849
850
851
852
853
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
854
855
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
856
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
857
858
859
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
860
861
862
863
864
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
865
        # temperature = 0.0 if not set
866
867
868
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
869
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
870
        do_sample = generation_kwargs.get("do_sample", None)
871
872
873
874
875

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
876
877
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
878
879
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
880
            self.tokenizer, stop, context.shape[1], context.shape[0]
881
        )
882
        return self.model.generate(
883
            input_ids=context,
884
885
            max_length=max_length,
            stopping_criteria=stopping_criteria,
886
            pad_token_id=self.tokenizer.pad_token_id,
887
888
889
            use_cache=True,
            **generation_kwargs,
        )
890

Baber Abbasi's avatar
Baber Abbasi committed
891
892
893
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
894
        if self.backend == "causal":
haileyschoelkopf's avatar
haileyschoelkopf committed
895
896
897
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
898
899
900
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
901
        elif self.backend == "seq2seq":
haileyschoelkopf's avatar
haileyschoelkopf committed
902
903
904
905
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
906
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
907
908
            logits = logits[:contlen]

909
910
        return logits

911
912
913
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
914
915
916
917
918
919
920
921
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

922
923
924
925
926
927
928
929
930
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
931
        ):
932
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
933
934
935
936
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
937
                        prefix_token=self.prefix_token_id,
938
939
940
941
942
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
943
944

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
945
            windows = [(None,) + x for x in rolling_token_windows]
946

947
948
949
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
971
            )
972
973
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
974

975
976
977
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
978

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
994

995
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
996

997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1010
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1011
1012
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1013

Ethan Smith's avatar
Ethan Smith committed
1014
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1015
1016
1017
1018
1019
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
1020
1021
1022
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1023
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1024
            """Defines the key for the sorted method"""
1025
1026
1027
1028
1029
1030
1031
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1032
            toks = req[1] + req[2]
1033
1034
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1035
1036
1037
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1038
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1039
1040
1041
1042
1043
1044
1045
1046
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1047
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1048
1049
1050
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1051
1052
1053

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1054
1055
1056
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1057
1058
1059
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1060
1061
1062
1063
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1064
1065
1066
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1067
            else None
1068
1069
        )

Baber Abbasi's avatar
Baber Abbasi committed
1070
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1071
1072
1073
1074
1075
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1076
        for chunk in chunks:
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1096
                # how this all works (illustrated on a causal decoder-only setup):
1097
1098
1099
1100
1101
1102
1103
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1104
                if self.backend == "causal":
1105
1106
1107
1108
1109
1110
1111
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
                        eval_logger.warn(
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1112
1113
1114
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1115
1116
                        device=self.device,
                    )
1117
                    (inplen,) = inp.shape
1118
                elif self.backend == "seq2seq":
1119
1120
1121
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1122
                        device=self.device,
1123
                    )
1124
                    (inplen,) = inp.shape
1125
1126
1127
1128

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1129
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1130
                        (continuation_enc)[-self.max_length :],
1131
1132
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1133
                        dtype=torch.long,
1134
1135
                        device=self.device,
                    )
1136
1137
                    (contlen,) = cont.shape

1138
1139
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1140
1141
1142
1143
1144
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1145

haileyschoelkopf's avatar
haileyschoelkopf committed
1146
1147
1148
1149
1150
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1151
1152
1153
1154

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1155

1156
1157
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1158
            if self.backend == "causal":
1159
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1160
1161
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1162
            elif self.backend == "seq2seq":
1163
                # TODO: left-pad encoder inps and mask?
1164
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1165
1166
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1167
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1168
1169
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1170
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1171
1172
1173
1174
1175
1176
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1177
1178
1179

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
1180
            )  # [batch, padding_length (inp or cont), vocab]
1181

Baber Abbasi's avatar
Baber Abbasi committed
1182
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1183
1184
1185
1186
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1187
                # take only logits in the continuation
1188
                # (discard context toks if decoder-only ; discard right-padding)
1189
1190
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1191
                ctx_len = (
1192
                    inplen + (logits.shape[0] - padding_len_inp)
1193
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1194
1195
                    else None
                )
1196
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1197
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1198
1199
1200
1201

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
                    max_equal = (greedy_tokens == cont_toks).all()

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1229
1230
1231
1232
1233
1234
1235
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1236
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1237
1238

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1239

1240
1241
        return re_ord.get_original(res)

1242
1243
1244
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1245
        res = []
1246

Baber Abbasi's avatar
Baber Abbasi committed
1247
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1248
            """Defines the key for the sorted method"""
1249
1250
1251
1252
1253
1254
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1255
1256
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1257

1258
1259
        pbar = tqdm(
            total=len(requests),
1260
            disable=(disable_tqdm or (self.rank != 0)),
1261
1262
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1263
        adaptive_batch_size = None
1264
1265
1266
1267
1268
1269
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1270
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1283

Baber Abbasi's avatar
Baber Abbasi committed
1284
1285
1286
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1287
1288
1289
1290
1291
1292
1293
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1294
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1295
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1296
1297
1298
1299
1300
1301
1302
1303
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1304
1305
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1306
1307
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1308
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1309
                )
Baber Abbasi's avatar
Baber Abbasi committed
1310
1311
1312
1313
1314
1315
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1316
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1317
1318
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
1319
1320
1321
                assert (
                    max_ctx_len > 0
                ), f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
1322
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1334

Baber Abbasi's avatar
Baber Abbasi committed
1335
1336
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1337

Baber Abbasi's avatar
Baber Abbasi committed
1338
1339
1340
1341
1342
1343
1344
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1345

Baber Abbasi's avatar
Baber Abbasi committed
1346
1347
1348
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1349
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1350
                    cont_toks = cont_toks[context_enc.shape[1] :]
1351

Baber Abbasi's avatar
Baber Abbasi committed
1352
                s = self.tok_decode(cont_toks)
1353

Baber Abbasi's avatar
Baber Abbasi committed
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1367

1368
        pbar.close()
1369

Baber Abbasi's avatar
Baber Abbasi committed
1370
        return res
1371

KonradSzafer's avatar
KonradSzafer committed
1372
1373
1374
1375
    def apply_chat_template(self, chat_history: List[Dict[str, str]]) -> str:
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        try:
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
                chat_history, tokenize=False, add_generation_prompt=True
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1390

1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1415
                eval_logger.debug(
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info