"...test/training_service/kubeflowTrainingService.test.ts" did not exist on "b749266d3a75a410e83b409ebe99a027a70f2045"
huggingface.py 64.4 KB
Newer Older
1
2
from __future__ import annotations

3
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
4
import logging
5
import os
Jeevan's avatar
Jeevan committed
6
from datetime import timedelta
7
from pathlib import Path
8
from typing import TYPE_CHECKING, Any, Dict, List, Literal, Optional, Tuple, Union
9

10
import jinja2
11
import torch
12
import torch.nn.functional as F
13
import transformers
Jeevan's avatar
Jeevan committed
14
15
16
17
18
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
19
from accelerate.utils import get_max_memory
20
from huggingface_hub import HfApi
21
22
from packaging import version
from tqdm import tqdm
23
24
25
26
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
27
28

from lm_eval import utils
baberabb's avatar
baberabb committed
29
from lm_eval.api.instance import Instance
30
from lm_eval.api.model import TemplateLM
31
from lm_eval.api.registry import register_model
32
33
34
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
35
    configure_pad_token,
36
    get_dtype,
37
    handle_stop_sequences,
38
    pad_and_concat,
39
    postprocess_generated_text,
40
41
    stop_sequences_criteria,
)
42

43

44
45
46
if TYPE_CHECKING:
    from transformers.quantizers import AutoQuantizationConfig

Lintang Sutawika's avatar
Lintang Sutawika committed
47
eval_logger = logging.getLogger(__name__)
48

lintangsutawika's avatar
lintangsutawika committed
49

50
@register_model("hf-auto", "hf", "huggingface")
51
class HFLM(TemplateLM):
52
53
54
55
56
57
58
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

59
    AUTO_MODEL_CLASS = None
60
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
61

62
63
    def __init__(
        self,
64
        pretrained: Union[str, transformers.PreTrainedModel],
65
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
66
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
67
        revision: Optional[str] = "main",
68
        subfolder: str = "",
69
70
71
72
73
74
75
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
76
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
77
        logits_cache: bool = True,
78
79
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
80
        dtype: Optional[Union[str, torch.dtype]] = "auto",
81
        softmax_dtype: Optional[Union[str, torch.dtype]] = None,
82
        mixed_precision_dtype: Optional[Union[str, torch.dtype]] = None,
Benjamin Fattori's avatar
Benjamin Fattori committed
83
84
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
85
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
86
        use_fast_tokenizer: Optional[bool] = True,
87
        add_bos_token: Optional[bool] = False,
88
        prefix_token_id: Optional[int] = None,
89
        # arguments used for splitting a model across GPUs naively.
90
91
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
92
93
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
94
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
95
        # PEFT, delta weights and quantization options
96
        peft: Optional[str] = None,
97
        delta: Optional[str] = None,
98
        autogptq: Optional[Union[bool, str]] = False,
99
        gptqmodel: Optional[bool] = False,
100
        gguf_file: Optional[str] = None,
101
102
103
        # end token for thinking, either the string or int token id.
        # splits to get response after this token (if provided).
        think_end_token: Union[str, int, None] = None,
104
105
        enable_thinking: bool | None = None,
        chat_template_args: Optional[dict[str, Any]] = None,
106
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
107
    ) -> None:
108
        super().__init__()
109
110
111
112
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
113
            )
Baber Abbasi's avatar
Baber Abbasi committed
114
115
116
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
117
118
119
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
120
            gpus = 0
121

122
        else:
123
124
125
126
127
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
128
129
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
130
131
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
132

133
134
135
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
136
            # using one process with no model parallelism
137
138
139
140
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
141
                    + [f"cuda:{i}" for i in range(gpus)]
142
                    + ["mps", "mps:0"]
143
                    + [f"npu:{i}" for i in range(gpus)]
144
                )
145
                if device and device in device_list:
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
162
            else:  # Parallelism managed by accelerate
163
164
165
166
167
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
168
169
170
171
172
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
173

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
174
            revision = str(revision)  # cast to string if not already one
175

176
            self._get_config(
177
178
179
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
180
                gguf_file=gguf_file,
181
                subfolder=subfolder,
182
183
            )

184
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
185
186
187
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
188

189
190
191
192
193
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
194
            subfolder=subfolder,
195
196
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
197
            gguf_file=gguf_file,
198
            add_bos_token=add_bos_token,
199
200
        )

201
202
203
204
205
206
207
        if (
            quantization_config := getattr(self.config, "quantization_config", None)
        ) is not None and isinstance(quantization_config, dict):
            from transformers.quantizers import AutoQuantizationConfig

            quantization_config = AutoQuantizationConfig.from_dict(quantization_config)

208
209
210
211
212
213
214
215
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
216
                gpus=gpus,
217
218
219
220
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
221
                delta=delta,
222
                autogptq=autogptq,
223
                gptqmodel=gptqmodel,
224
                gguf_file=gguf_file,
225
                quantization_config=quantization_config,
226
                subfolder=subfolder,
227
                **kwargs,
228
229
            )

230
        # access self._model through self.model property outside this method
231
232
233
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
234

235
236
237
238
239
        self.think_end_token = (
            int(think_end_token)
            if (isinstance(think_end_token, str) and think_end_token.isdigit())
            else think_end_token
        )
lintangsutawika's avatar
lintangsutawika committed
240
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
241
        self.logits_cache = logits_cache
242
        self.vocab_size = self.tokenizer.vocab_size
243
        # select (or create) a pad token to use
244
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
245
246
247
248
249
        self.chat_template_args = (
            chat_template_args or {} | dict(enable_thinking=enable_thinking)
            if enable_thinking is not None
            else {}
        )
250

251
        self.add_bos_token = add_bos_token
252
        if "gemma" in getattr(self.config, "model_type", ""):
253
            self.add_bos_token = True
254
            eval_logger.info(
255
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
256
257
            )

258
        self._max_length = max_length
259
260
261
262
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
263
264
265
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
266
267
268
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
269
270
271
272
273
        self.mixed_precision_dtype = (
            get_dtype(mixed_precision_dtype)
            if mixed_precision_dtype is not None
            else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
274
275
276
277
278
279
280

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
281

282
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
283
284
285
286
287
288
289
290
291
292
293
294
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
295
296
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
297
298
299
300
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
301
                        )
Nathan Habib's avatar
Nathan Habib committed
302
                    elif gpus > accelerator.num_processes:
303
304
305
306
307
308
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
309
310
311
312
313
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

314
                    self._device = torch.device(f"{accelerator.device}")
315
                    self.accelerator = accelerator
316

317
318
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
319
320
321
322
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
323
324
325
326
327
328
329
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
330

331
        self.custom_prefix_token_id = prefix_token_id
332
333
334
335
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
336

Nathan Habib's avatar
Nathan Habib committed
337
338
    def _get_accelerate_args(
        self,
339
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
386
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
387
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
388
                else:
Nathan Habib's avatar
Nathan Habib committed
389
390
391
392
393
394
395
396
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
397
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
398
            eval_logger.info(
399
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

425
426
427
428
429
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

430
431
432
433
434
435
436
437
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

438
439
440
441
442
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

443
444
445
446
447
448
449
450
451
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

452
453
    @property
    def max_length(self):
454
455
456
457
458
459
460
461
462
463
464
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
465

466
    @property
Ethan Smith's avatar
Ethan Smith committed
467
    def max_gen_toks(self) -> int:
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
486
487
488
489
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

490
491
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
492
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
493
        backend: Literal["default", "causal", "seq2seq"] = "default",
494
495
496
497
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
498
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
499
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
500
501
502

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
503
        """
504

505
506
507
508
509
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
510
                self.backend = backend
511
            elif backend == "seq2seq":
512
                self.backend = backend
513
            eval_logger.info(
514
                f"Overrode HF model backend type, and using type '{self.backend}'"
515
516
517
518
519
520
521
522
523
524
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
525
                self.backend = "seq2seq"
526
                eval_logger.debug(f"Using model type '{self.backend}'")
527
528
529
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
530
                self.backend = "causal"
531
                eval_logger.debug(f"Using model type '{self.backend}'")
532
533
534
535
536
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
537
                        "Setting backend to causal"
538
539
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
540
541
542
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
543
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
544
                )
545

546
547
548
549
550
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
551
552
553
554
555
556

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
557
        gguf_file: Optional[str] = None,
558
        subfolder: str = "",
559
    ) -> None:
560
        """Return the model config for HuggingFace models"""
561
562
563
564
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
565
            gguf_file=gguf_file,
566
            subfolder=subfolder,
567
568
569
570
571
572
573
574
575
576
577
578
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
579
        gpus: Optional[int] = None,
580
581
582
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
583
        # PEFT, delta weights and quantization options
584
        peft: Optional[str] = None,
585
        delta: Optional[str] = None,
586
        autogptq: Optional[Union[bool, str]] = False,
587
        gptqmodel: Optional[bool] = False,
588
        gguf_file: Optional[str] = None,
589
        quantization_config: Optional["AutoQuantizationConfig"] = None,
590
        subfolder: str = "",
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
607
608
609
610
611
612
613
614
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
615
            )
Nathan Habib's avatar
Nathan Habib committed
616
        )
617

618
        if not autogptq and not gptqmodel:
619
            if model_kwargs.get("load_in_4bit", None):
Baber Abbasi's avatar
Baber Abbasi committed
620
621
622
                assert transformers.__version__ >= "4.30.0", (
                    "load_in_4bit requires transformers >= 4.30.0"
                )
623
624
625
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
626
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
627
628
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
629

630
631
632
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
633
                torch_dtype=get_dtype(dtype),
634
                trust_remote_code=trust_remote_code,
635
                gguf_file=gguf_file,
636
                quantization_config=quantization_config,
637
                subfolder=subfolder,
638
639
640
                **model_kwargs,
            )
        else:
641
642
643
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
644
645
                )

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
677

678
679
680
681
682
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

683
        if peft:
684
685
686
            from peft import PeftModel
            from peft import __version__ as PEFT_VERSION

687
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
688
689
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
690
691
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
692
693
694
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
695
                self._model.resize_token_embeddings(len(self.tokenizer))
696
697
698
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
738
        gguf_file: Optional[str] = None,
739
        add_bos_token: Optional[bool] = False,
740
        subfolder: Optional[str] = "",
741
742
743
744
745
746
747
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
748
749
750
751
752
753
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
754
        if not tokenizer and gguf_file is not None:
755
756
757
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
758

759
760
761
        if add_bos_token:
            kwargs["add_bos_token"] = True

762
763
764
        if subfolder:
            kwargs["subfolder"] = subfolder

765
766
767
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
768
                    tokenizer, **kwargs
769
770
771
772
773
774
775
776
777
778
779
780
781
782
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
783
                model_name, **kwargs
784
785
786
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
787
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
788
789
790
791
792
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
793
794
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
795
796
        else:
            max_length = self.max_length
797
798
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
799

Benjamin Fattori's avatar
Benjamin Fattori committed
800
801
802
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
803
            if self.backend == "seq2seq":
804
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
805
806
807
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
808
809
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
810
811
812
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
813
814
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
815
816
817
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
818
            for _ in range(5):
819
820
821
822
823
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
824

Benjamin Fattori's avatar
Benjamin Fattori committed
825
826
            return batch_size

827
828
829
830
831
832
833
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
834

835
836
837
838
839
840
841
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
842
            clear_torch_cache()
843
844
            return batch_size

845
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
846
847
        return batch_size

baberabb's avatar
baberabb committed
848
849
850
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
851
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
852
853
854
855
856
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
857
        if add_special_tokens is None:
858
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
859
860
861
862
863
864
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
865

Lintang Sutawika's avatar
Lintang Sutawika committed
866
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
867

868
869
870
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
871

872
873
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
874
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
875
876
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
877
        padding_side: str = "left",
878
879
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
880
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
881
882
883
884
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
885
        add_special_tokens = {}
886
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
887
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
888
889
890

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
891
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
892
893
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
894
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
895
896
        )
        if left_truncate_len:
897
898
899
900
901
902
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
                eval_logger.warn(
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
903
904
905
906
907
908
909
910
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
911
912
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
913
914
915

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
916
        :param inps: torch.Tensor
917
918
919
920
921
922
923
924
925
926
927
928
929
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
            with torch.autocast(
                device_type=self.device.type,
                dtype=self.mixed_precision_dtype,
                enabled=self.mixed_precision_dtype is not None,
            ):
                if attn_mask is not None or labels is not None:
                    assert attn_mask is not None and labels is not None
                    assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
                    return self.model(
                        input_ids=inps, attention_mask=attn_mask, labels=labels
                    ).logits
                else:
                    assert self.AUTO_MODEL_CLASS in (
                        transformers.AutoModelForCausalLM,
                        transformers.AutoModelForVision2Seq,
                    )
                    return self.model(inps).logits
947
948

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
949
        # temperature = 0.0 if not set
950
951
952
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
953
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
954
        do_sample = generation_kwargs.get("do_sample", None)
955
956
957
958
959

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
960
961
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
962
963
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
964
            self.tokenizer, stop, context.shape[1], context.shape[0]
965
        )
966
967
968
969
970
971
972
973
974
975
976
977
978
        with torch.autocast(
            device_type=self.device.type,
            dtype=self.mixed_precision_dtype,
            enabled=self.mixed_precision_dtype is not None,
        ):
            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )
979

Baber Abbasi's avatar
Baber Abbasi committed
980
981
982
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
983
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
984
985
986
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
987
988
989
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
990
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
991
992
993
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
994
            # only discard right-padding.
995
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
996
997
            logits = logits[:contlen]

998
999
        return logits

1000
1001
1002
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
1003
1004
1005
1006
1007
1008
1009
1010
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

1011
1012
1013
1014
1015
1016
1017
1018
1019
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
1020
        ):
1021
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
1022
1023
1024
1025
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
1026
                        prefix_token=self.prefix_token_id,
1027
1028
1029
1030
1031
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1032
1033

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1034
            windows = [(None,) + x for x in rolling_token_windows]
1035

1036
1037
1038
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
1039

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1060
            )
1061
1062
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
1063

1064
1065
1066
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1067

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1083

1084
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1099
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1100
1101
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1102

Ethan Smith's avatar
Ethan Smith committed
1103
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1104
1105
1106
1107
1108
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
1109
1110
1111
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1112
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1113
            """Defines the key for the sorted method"""
1114
1115
1116
1117
1118
1119
1120
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1121
            toks = req[1] + req[2]
1122
1123
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1124
1125
1126
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1127
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1128
1129
1130
1131
1132
1133
1134
1135
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1136
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1137
1138
1139
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1140
1141
1142

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1143
1144
1145
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1146
1147
1148
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1149
1150
1151
1152
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1153
1154
1155
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1156
            else None
1157
1158
        )

Baber Abbasi's avatar
Baber Abbasi committed
1159
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1160
1161
1162
1163
1164
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1165
        for chunk in chunks:
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1185
                # how this all works (illustrated on a causal decoder-only setup):
1186
1187
1188
1189
1190
1191
1192
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1193
                if self.backend == "causal":
1194
1195
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1196
                        eval_logger.warning(
1197
1198
1199
1200
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1201
1202
1203
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1204
1205
                        device=self.device,
                    )
1206
                    (inplen,) = inp.shape
1207
                elif self.backend == "seq2seq":
1208
1209
1210
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1211
                        device=self.device,
1212
                    )
1213
                    (inplen,) = inp.shape
1214
1215
1216
1217

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1218
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1219
                        (continuation_enc)[-self.max_length :],
1220
1221
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1222
                        dtype=torch.long,
1223
1224
                        device=self.device,
                    )
1225
1226
                    (contlen,) = cont.shape

1227
1228
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1229
1230
1231
1232
1233
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1234

haileyschoelkopf's avatar
haileyschoelkopf committed
1235
1236
1237
1238
1239
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1240
1241
1242
1243

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1244

1245
1246
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1247
            if self.backend == "causal":
1248
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1249
1250
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1251
            elif self.backend == "seq2seq":
1252
                # TODO: left-pad encoder inps and mask?
1253
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1254
1255
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1256
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1257
1258
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1259
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1260
1261
1262
1263
1264
1265
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1266
1267

            multi_logits = F.log_softmax(
1268
1269
1270
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1271
            )  # [batch, padding_length (inp or cont), vocab]
1272

Baber Abbasi's avatar
Baber Abbasi committed
1273
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1274
1275
1276
1277
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1278
                # take only logits in the continuation
1279
                # (discard context toks if decoder-only ; discard right-padding)
1280
1281
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1282
                ctx_len = (
1283
                    inplen + (logits.shape[0] - padding_len_inp)
1284
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1285
1286
                    else None
                )
1287
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1288
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1289
1290
1291
1292

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1307
1308
1309
1310
1311
1312
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1325
1326
1327
1328
1329
1330
1331
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1332
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1333
1334

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1335

1336
1337
        return re_ord.get_original(res)

1338
1339
1340
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1341
        res = []
1342

Baber Abbasi's avatar
Baber Abbasi committed
1343
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1344
            """Defines the key for the sorted method"""
1345
1346
1347
1348
1349
1350
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1351
1352
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1353

1354
1355
        pbar = tqdm(
            total=len(requests),
1356
            disable=(disable_tqdm or (self.rank != 0)),
1357
1358
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1359
        adaptive_batch_size = None
1360
1361
1362
1363
1364
1365
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1366
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1379

Baber Abbasi's avatar
Baber Abbasi committed
1380
1381
1382
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1383
1384
1385
1386
1387
1388
1389
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1390
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1391
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1392
1393
1394
1395
1396
1397
1398
1399
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1400
1401
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1402
1403
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1404
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1405
                )
Baber Abbasi's avatar
Baber Abbasi committed
1406
1407
1408
1409
1410
1411
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1412
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1413
1414
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1415
1416
1417
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1418
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1430

Baber Abbasi's avatar
Baber Abbasi committed
1431
1432
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1433

Baber Abbasi's avatar
Baber Abbasi committed
1434
1435
1436
1437
1438
1439
1440
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1441

Baber Abbasi's avatar
Baber Abbasi committed
1442
1443
1444
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1445
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1446
                    cont_toks = cont_toks[context_enc.shape[1] :]
1447

1448
1449
1450
1451
1452
1453
1454
1455
1456
                # Handle integer think_end_token: find last occurrence and strip tokens after it
                if isinstance(self.think_end_token, int):
                    think_token_indices = [
                        i
                        for i, token in enumerate(cont_toks)
                        if token == self.think_end_token
                    ]
                    if think_token_indices:
                        cont_toks = cont_toks[think_token_indices[-1] + 1 :]
1457

1458
                s = self.tok_decode(cont_toks)
Baber Abbasi's avatar
Baber Abbasi committed
1459

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
                # Strip leading whitespace if we removed thinking tokens
                if isinstance(self.think_end_token, int):
                    s = s.lstrip()

                # Apply post-processing: remove stop sequences and string-based thinking tokens
                s = postprocess_generated_text(
                    generation=s,
                    stop=until,
                    think_end_token=self.think_end_token
                    if isinstance(self.think_end_token, str)
                    else None,
                )
Baber Abbasi's avatar
Baber Abbasi committed
1472
1473
1474
1475
1476
1477
                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1478

1479
        pbar.close()
1480

Baber Abbasi's avatar
Baber Abbasi committed
1481
        return res
1482

Baber Abbasi's avatar
Baber Abbasi committed
1483
1484
1485
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
1486
1487
1488
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1489
1490
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1491
1492
1493
1494
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1495
                **self.chat_template_args,
1496
1497
1498
1499
1500
1501
1502
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1503
1504
1505
1506
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1507
                **self.chat_template_args,
1508
1509
1510
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1511

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1536
                eval_logger.debug(
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info