huggingface.py 25.6 KB
Newer Older
1
2
3
4
5
import torch
import transformers
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES

import copy
6
from collections import defaultdict
7
8
9
10
11
12
13
14
15
16
17
18
from tqdm import tqdm

import torch.nn.functional as F

from lm_eval import utils
from lm_eval.logger import eval_logger
from lm_eval.api.model import LM
from lm_eval.api.registry import register_model

from lm_eval.utils import MultiTokenEOSCriteria, stop_sequences_criteria

from accelerate import Accelerator
haileyschoelkopf's avatar
haileyschoelkopf committed
19
from typing import List, Union
20
21


22
@register_model("hf-auto", "hf", "huggingface")
23
class HFLM(LM):
24
25
26
27
28
29
30
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

31
    AUTO_MODEL_CLASS = None
32
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
33

34
35
36
37
38
39
    def __init__(
        self,
        device="cuda",
        pretrained="gpt2",
        revision="main",
        low_cpu_mem_usage=None,
40
        max_length=None,
41
42
43
44
45
46
47
48
49
50
51
        subfolder=None,
        tokenizer=None,
        batch_size=1,
    ):
        super().__init__()

        assert isinstance(device, str)
        assert isinstance(pretrained, str)
        assert isinstance(batch_size, int)

        gpus = torch.cuda.device_count()
haileyschoelkopf's avatar
haileyschoelkopf committed
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
        if gpus <= 1:
            if device:
                if device not in ["cuda", "cpu"]:
                    device = int(device)
                self._device = torch.device(device)
                eval_logger.info(f"Using device '{device}'")
            else:
                eval_logger.info("Device not specified")
                eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                self._device = (
                    torch.device("cuda")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
            self._rank = 0
            self._world_size = 1

        else:
            self._device = "cpu"

        # TODO: update this to be less of a hack once subfolder is fixed in HF
        revision = revision + ("/" + subfolder if subfolder is not None else "")

haileyschoelkopf's avatar
haileyschoelkopf committed
76
        # get config
77
78
79
80
81
82
83
84
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
        )

        if getattr(self._config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
            self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
        else:
haileyschoelkopf's avatar
haileyschoelkopf committed
85
            self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
86

haileyschoelkopf's avatar
haileyschoelkopf committed
87
88
89
90
        assert self.AUTO_MODEL_CLASS in [
            transformers.AutoModelForCausalLM,
            transformers.AutoModelForSeq2SeqLM,
        ]
91

92
        self._model = self.AUTO_MODEL_CLASS.from_pretrained(
93
94
            pretrained, revision=revision, low_cpu_mem_usage=low_cpu_mem_usage
        ).to(self.device)
95
        # forever after, access self._model through self.model property
96
97
98
99
100
101
102
103
        self.model.eval()

        self.tokenizer = transformers.AutoTokenizer.from_pretrained(
            pretrained if tokenizer is None else tokenizer,
            revision=revision,
        )

        self.vocab_size = self.tokenizer.vocab_size
haileyschoelkopf's avatar
haileyschoelkopf committed
104
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
105

106
107
        self._max_length = max_length

108
109
110
111
112
113
114
        # multithreading and batching
        self.batch_size_per_gpu = batch_size  # todo: adaptive batch size

        # multigpu support with accelerate
        if gpus > 1:
            accelerator = Accelerator()
            if gpus > accelerator.num_processes:
115
                # TODO: make sure there's still never an edge case where we unintentionally default to CPU
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
                eval_logger.warning(
                    "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                    "If you would like to use data parallelism, please launch the script "
                    "with 'accelerate launch *script*'. "
                    f"Current run will proceed with {accelerator.num_processes} devices."
                )
                self._rank = accelerator.local_process_index
                self._world_size = accelerator.num_processes
                # manually set model to use gpu, for case where many GPUs available but
                # only seek to use one
                self._device = (
                    torch.device(f"cuda:{accelerator.local_process_index}")
                    if torch.cuda.is_available()
                    else torch.device("cpu")
                )
                self.model.to(self.device)
            else:
haileyschoelkopf's avatar
haileyschoelkopf committed
133
                self._model = accelerator.prepare(self.model)
134
135
136
137
138
139
140
141
                self._device = torch.device(f"cuda:{accelerator.local_process_index}")
                self.accelerator = accelerator

                if self.accelerator.is_local_main_process:
                    eval_logger.info(f"Using {gpus} devices with data parallelism")

                self._rank = self.accelerator.local_process_index
                self._world_size = self.accelerator.num_processes
haileyschoelkopf's avatar
haileyschoelkopf committed
142

143
144
145
146
147
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

148
149
150
151
152
153
154
155
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

156
157
158
159
160
161
162
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

    @property
    def max_length(self):
163
164
165
166
167
168
169
170
171
172
173
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
174

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @property
    def max_gen_toks(self):
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

    def tok_encode(self, string: str, left_truncate_len=None):
haileyschoelkopf's avatar
haileyschoelkopf committed
196
        """ """
197
198
199
200
201
202
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer.encode(string, add_special_tokens=add_special_tokens)
haileyschoelkopf's avatar
haileyschoelkopf committed
203

204
205
206
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
207

208
209
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    def tok_batch_encode(
        self, strings: List[str], padding_side="left", left_truncate_len=None
    ):
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            add_special_tokens = False
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            add_special_tokens = True

        encoding = self.tokenizer(
            strings,
            padding="longest",
            return_tensors="pt",
            add_special_tokens=add_special_tokens,
        )
        if left_truncate_len:
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

237
238
239
240
241
242
243
244
    def tok_decode(self, tokens):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
            return self.tokenizer.decode(tokens)
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
            return self.tokenizer.decode(tokens, skip_special_tokens=True)

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
245
        :param inps: torch.Tensor
246
247
248
249
250
251
252
253
254
255
256
257
258
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
259
260
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
261
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
262
263
264
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
265
266
267
268
269
270
271
272
273
274
275
276
277
            else:
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
        # we require users to pass do_sample=True explicitly
        # for non-greedy gen. This should be reevaluated when considering beam search.
        if "do_sample" not in generation_kwargs.keys():
            generation_kwargs["do_sample"] = False
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
            self.tokenizer, stop, 1, context.shape[0]
        )
278
279
280
281
282
283
284
285
        return self.model.generate(
            context,
            max_length=max_length,
            stopping_criteria=stopping_criteria,
            pad_token_id=self.eot_token_id,
            use_cache=True,
            **generation_kwargs,
        )
286
287
288

    def _select_cont_toks(self, logits, contlen=None, inplen=None):
        if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
289
290
291
            assert (
                contlen and inplen
            ), "Must pass input len and cont. len to select scored logits for causal LM"
292
293
294
295
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
        elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
296
297
298
299
            assert (
                contlen and not inplen
            ), "Selecting scored logits for Seq2SeqLM requires only cont. len"
            # only discard right-padding.
300
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
301
302
            logits = logits[:contlen]

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        return logits

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in [req.args for req in requests]:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        loglikelihoods = []
        for (string,) in tqdm([req.args for req in requests], disable=(self.rank != 0)):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
haileyschoelkopf's avatar
haileyschoelkopf committed
328
                        prefix_token=self.eot_token_id,
329
330
331
332
333
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
334
335

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            pad_amnt = 0
            if self.world_size > 1:
                # We pad out the external document-level iterator so the inner iterator doesn't hang
                mytensor = torch.tensor(len(rolling_token_windows), device=self.device)
                gathered = (
                    self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
                )

                pad_amnt = max(gathered) - gathered[self.rank]
                if pad_amnt > 0:
                    rolling_token_windows += pad_amnt * [rolling_token_windows[0]]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows, disable_tqdm=True
            )

            if (self.world_size > 1) and (pad_amnt > 0):
                string_nll = [x[0] for x in string_nll[:-pad_amnt]]
            else:
                # discard is_greedy
                string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
            return -len(toks), tuple(toks)

        # TODO: automatic (variable) batch size detection for vectorization
        re_ord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(
            tqdm(re_ord.get_reordered(), disable=(disable_tqdm or (self.rank != 0))),
            self.batch_size,
        ):

            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
406
                # how this all works (illustrated on a causal decoder-only setup):
407
408
409
410
411
412
413
414
415
416
417
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
418
419
                        device=self.device,
                    )
420
421
422
423
424
                    (inplen,) = inp.shape
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
425
                        device=self.device,
426
                    )
427
                    (inplen,) = inp.shape
428
429
430
431

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

432
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
433
                        (continuation_enc)[-self.max_length :],
434
435
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
436
                        dtype=torch.long,
437
438
                        device=self.device,
                    )
439
440
                    (contlen,) = cont.shape

441
442
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
443
444
445
446
447
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
448

haileyschoelkopf's avatar
haileyschoelkopf committed
449
450
451
452
453
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
454
455
456
457

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
458

459
460
461
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
            if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
haileyschoelkopf's avatar
haileyschoelkopf committed
462
463
464
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
465
466
            elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                # TODO: left-pad encoder inps and mask?
haileyschoelkopf's avatar
haileyschoelkopf committed
467
468
469
470
471
472
473
474
475
476
477
478
479
                batched_inps = utils.pad_and_concat(
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
                batched_conts = utils.pad_and_concat(
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
                batched_encoder_mask = utils.pad_and_concat(
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
480
481
482

            multi_logits = F.log_softmax(
                self._model_call(batched_inps, **call_kwargs), dim=-1
483
            ).cpu()  # [batch, padding_length (inp or cont), vocab]
484
485
486
487
488
489
490

            for (cache_key, _, _), logits, inplen, cont_toks in zip(
                chunk, multi_logits, inplens, cont_toks_list
            ):

                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
491
                # take only logits in the continuation
492
                # (discard context toks if decoder-only ; discard right-padding)
haileyschoelkopf's avatar
haileyschoelkopf committed
493
494
495
496
497
                ctx_len = (
                    inplen
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
                    else None
                )
498
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
499
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
                max_equal = (greedy_tokens == cont_toks).all()

                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]

                # Answer: (log prob, is-exact-match)
                answer = (float(logits.sum()), bool(max_equal))

                res.append(answer)

haileyschoelkopf's avatar
haileyschoelkopf committed
519
520
                self.cache_hook.add_partial("loglikelihood", cache_key, answer)

521
522
523
        return re_ord.get_original(res)

    def greedy_until(self, requests):
524
525
        res = defaultdict(list)
        re_ords = {}
526
527

        def _collate(x):
528
529
530
531
532
533
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
534
            toks = self.tok_encode(x[0])
haileyschoelkopf's avatar
haileyschoelkopf committed
535
            return -len(toks), x[0]
536

537
538
539
        grouper = utils.Grouper(requests, lambda x: str(x.args[1]))
        for key, reqs in grouper.get_grouped().items():
            re_ords[key] = utils.Reorderer([req.args for req in reqs], _collate)
540

541
542
543
544
545
546
547
        pbar = tqdm(total=len(requests))
        assert len(requests) == sum(
            [len(list(re_ord.get_reordered())) for re_ord in re_ords.values()]
        )
        for key, re_ord in re_ords.items():
            for chunk in utils.chunks(
                # tqdm(
haileyschoelkopf's avatar
haileyschoelkopf committed
548
                re_ord.get_reordered(),
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
                # disable=(self.rank != 0),
                # ),
                self.batch_size,
            ):
                contexts, all_gen_kwargs = zip(*chunk)
                gen_kwargs = all_gen_kwargs[
                    0
                ]  # TODO: handle case where not all gen kwargs are same
                until = None
                if isinstance(gen_kwargs, dict):
                    kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
                    if "until" in kwargs.keys():
                        until = kwargs.pop("until")
                        if isinstance(until, str):
                            until = [kwargs]
                        elif not isinstance(until, list):
                            raise ValueError(
                                f"Expected `generation_kwargs['until']` to be of type Union[str,list] but got {until}"
                            )
                else:
                    raise ValueError(
                        f"Expected `generation_kwargs` to be of type `dict` but got {kwargs}"
                    )
                if not until:
                    until = [self.tok_decode(self.eot_token_id)]
                if "max_gen_toks" in kwargs.keys():
                    max_gen_toks = kwargs.pop("max_gen_toks")
                else:
                    max_gen_toks = self.max_gen_toks
                # first stop sequence is used to halt generation upon encountering
                (primary_until) = until[0]

                # set the max length in tokens of inputs ("context_enc")
haileyschoelkopf's avatar
haileyschoelkopf committed
582
                if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
583
584
585
586
587
                    # max len for inputs = max length, minus room to generate the max new tokens
                    max_ctx_len = self.max_length - max_gen_toks
                elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
                    # max len for inputs = encoder's whole max_length
                    max_ctx_len = self.max_length
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
                # encode, pad, and truncate contexts
                context_enc, attn_masks = self.tok_batch_encode(
                    contexts, left_truncate_len=max_ctx_len
                )
                context_enc = context_enc.to(self.device)
                attn_masks = attn_masks.to(self.device)

                cont = self._model_generate(
                    context=context_enc,
                    attention_mask=attn_masks,
                    max_length=context_enc.shape[1] + max_gen_toks,
                    stop=primary_until,
                    **kwargs,
                )
603

604
605
606
607
608
                cont_toks_list = cont.tolist()
                for cont_toks, context in zip(cont_toks_list, contexts):
                    # discard context + left-padding toks if using causal decoder-only LM
                    if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
                        cont_toks = cont_toks[context_enc.shape[1] :]
609

610
                    s = self.tok_decode(cont_toks)
611

612
613
614
615
                    # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                    for term in until:
                        if len(term) > 0:  # ignore '' separator, for seq2seq case where
                            s = s.split(term)[0]
haileyschoelkopf's avatar
haileyschoelkopf committed
616

617
618
619
620
621
622
623
624
625
626
627
628
                    res[str(gen_kwargs)].append(
                        s
                    )  # TODO: move this to res[-1].append(s) to separate per re_ord

                    self.cache_hook.add_partial(
                        "greedy_until", (context, gen_kwargs), s
                    )
                    pbar.update(1)
            res[key] = re_ord.get_original(res[key])
        pbar.close()
        return grouper.get_original(res)
        # return utils.join_iters([re_ord.get_original(rs) for re_ord, rs in zip(re_ords, res.values())])