huggingface.py 61.8 KB
Newer Older
1
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
2
import logging
3
import os
Jeevan's avatar
Jeevan committed
4
from datetime import timedelta
5
from pathlib import Path
6
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
7

8
import jinja2
9
import torch
10
import torch.nn.functional as F
11
import transformers
Jeevan's avatar
Jeevan committed
12
13
14
15
16
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
17
from accelerate.utils import get_max_memory
18
from huggingface_hub import HfApi
19
20
21
22
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
23
24
25
26
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
27
28

from lm_eval import utils
baberabb's avatar
baberabb committed
29
from lm_eval.api.instance import Instance
30
from lm_eval.api.model import TemplateLM
31
from lm_eval.api.registry import register_model
32
33
34
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
35
    configure_pad_token,
36
    get_dtype,
37
    handle_stop_sequences,
38
39
40
    pad_and_concat,
    stop_sequences_criteria,
)
41

42

Lintang Sutawika's avatar
Lintang Sutawika committed
43
eval_logger = logging.getLogger(__name__)
44

lintangsutawika's avatar
lintangsutawika committed
45

46
@register_model("hf-auto", "hf", "huggingface")
47
class HFLM(TemplateLM):
48
49
50
51
52
53
54
    """
    An abstracted Huggingface model class. Enables usage with both models of
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

55
    AUTO_MODEL_CLASS = None
56
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
57

58
59
    def __init__(
        self,
60
        pretrained: Union[str, transformers.PreTrainedModel],
61
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
62
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
63
        revision: Optional[str] = "main",
64
        subfolder: str = "",
65
66
67
68
69
70
71
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ] = None,
lintangsutawika's avatar
lintangsutawika committed
72
        truncation: Optional[bool] = False,
Baber Abbasi's avatar
Baber Abbasi committed
73
        logits_cache: bool = True,
74
75
        max_length: Optional[int] = None,
        device: Optional[str] = "cuda",
76
        dtype: Optional[Union[str, torch.dtype]] = "auto",
77
        softmax_dtype: Optional[Union[str, torch.dtype]] = None,
Benjamin Fattori's avatar
Benjamin Fattori committed
78
79
        batch_size: Optional[Union[int, str]] = 1,
        max_batch_size: Optional[int] = 64,
80
        trust_remote_code: Optional[bool] = False,
haileyschoelkopf's avatar
haileyschoelkopf committed
81
        use_fast_tokenizer: Optional[bool] = True,
82
        add_bos_token: Optional[bool] = False,
83
        prefix_token_id: Optional[int] = None,
84
        # arguments used for splitting a model across GPUs naively.
85
86
        # only used if `parallelize=True`.
        parallelize: Optional[bool] = False,
87
88
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
89
        offload_folder: Optional[Union[str, os.PathLike]] = "./offload",
90
        # PEFT, delta weights and quantization options
91
        peft: Optional[str] = None,
92
        delta: Optional[str] = None,
93
        autogptq: Optional[Union[bool, str]] = False,
94
        gptqmodel: Optional[bool] = False,
95
        gguf_file: Optional[str] = None,
96
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
97
    ) -> None:
98
        super().__init__()
99
100
101
102
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
103
            )
Baber Abbasi's avatar
Baber Abbasi committed
104
105
106
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
107
108
109
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
110
            gpus = 0
111

112
        else:
113
114
115
116
117
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
118
119
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
120
121
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
122

123
124
125
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
126
            # using one process with no model parallelism
127
128
129
130
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
131
                    + [f"cuda:{i}" for i in range(gpus)]
132
                    + ["mps", "mps:0"]
133
                    + [f"npu:{i}" for i in range(gpus)]
134
                )
135
                if device and device in device_list:
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
152
            else:  # Parallelism managed by accelerate
153
154
155
156
157
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
158
159
160
161
162
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
163

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
164
            revision = str(revision)  # cast to string if not already one
165

166
            self._get_config(
167
168
169
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
170
                gguf_file=gguf_file,
171
                subfolder=subfolder,
172
173
            )

174
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
175
176
177
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
178

179
180
181
182
183
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
184
            subfolder=subfolder,
185
186
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
187
            gguf_file=gguf_file,
188
            add_bos_token=add_bos_token,
189
190
        )

191
192
193
194
195
196
197
198
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
199
                gpus=gpus,
200
201
202
203
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
204
                delta=delta,
205
                autogptq=autogptq,
206
                gptqmodel=gptqmodel,
207
                gguf_file=gguf_file,
208
                quantization_config=getattr(self.config, "quantization_config", None),
209
                subfolder=subfolder,
210
                **kwargs,
211
212
            )

213
        # access self._model through self.model property outside this method
214
215
216
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
217

lintangsutawika's avatar
lintangsutawika committed
218
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
219
        self.logits_cache = logits_cache
220
        self.vocab_size = self.tokenizer.vocab_size
221
        # select (or create) a pad token to use
222
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
223

224
        self.add_bos_token = add_bos_token
225
        if "gemma" in getattr(self.config, "model_type", ""):
226
            self.add_bos_token = True
227
            eval_logger.info(
228
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
229
230
            )

231
        self._max_length = max_length
232
233
234
235
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
236
237
238
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
239
240
241
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
242
243
244
245
246
247
248

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
249

250
        if isinstance(pretrained, str):
Nathan Habib's avatar
Nathan Habib committed
251
252
253
254
255
256
257
258
259
260
261
262
            if gpus >= 1 or str(self.device) == "mps":
                # TODO: can remove this whole snippet except in the mps case, perhaps?
                if not (parallelize or autogptq or hasattr(self, "accelerator")):
                    # place model onto device requested manually,
                    # if not using HF Accelerate or device_map
                    # or any other option that preloads model onto device
                    try:
                        self.model.to(self.device)
                    except ValueError:
                        eval_logger.debug(
                            "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                        )
263
264
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
265
266
267
268
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
269
                        )
Nathan Habib's avatar
Nathan Habib committed
270
                    elif gpus > accelerator.num_processes:
271
272
273
274
275
276
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
277
278
279
280
281
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

282
                    self._device = torch.device(f"{accelerator.device}")
283
                    self.accelerator = accelerator
284

285
286
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
287
288
289
290
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
291
292
293
294
295
296
297
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
298

299
        self.custom_prefix_token_id = prefix_token_id
300
301
302
303
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
304

Nathan Habib's avatar
Nathan Habib committed
305
306
    def _get_accelerate_args(
        self,
307
        parallelize: Optional[bool] = None,
Nathan Habib's avatar
Nathan Habib committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
        device_map: Optional[str] = "auto",
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
        gpus: Optional[int] = None,
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
                if "cpu" in max_memory_all_gpus:
                    del max_memory_all_gpus["cpu"]
                if not hasattr(self, "accelerator"):
                    max_memory_per_gpu_map = {
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
354
                        k: v for k, v in max_memory_all_gpus.items()
Nathan Habib's avatar
Nathan Habib committed
355
                    }
Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
356
                else:
Nathan Habib's avatar
Nathan Habib committed
357
358
359
360
361
362
363
364
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
            args["max_memory"] = max_memory_per_gpu_map
365
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
366
            eval_logger.info(
367
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

393
394
395
396
397
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

398
399
400
401
402
403
404
405
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

406
407
408
409
410
    @property
    def eot_token_id(self):
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

411
412
413
414
415
416
417
418
419
    @property
    def prefix_token_id(self):
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

420
421
    @property
    def max_length(self):
422
423
424
425
426
427
428
429
430
431
432
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
            if self.tokenizer.model_max_length == 1000000000000000019884624838656:
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
433

434
    @property
Ethan Smith's avatar
Ethan Smith committed
435
    def max_gen_toks(self) -> int:
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
454
455
456
457
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

458
459
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
460
        config: Union[transformers.PretrainedConfig, transformers.AutoConfig],
461
        backend: Literal["default", "causal", "seq2seq"] = "default",
462
463
464
465
        trust_remote_code: Optional[bool] = False,
    ) -> None:
        """
        Helper method during initialization.
466
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
467
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
468
469
470

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
471
        """
472

473
474
475
476
477
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
            if backend == "causal":
478
                self.backend = backend
479
            elif backend == "seq2seq":
480
                self.backend = backend
481
            eval_logger.info(
482
                f"Overrode HF model backend type, and using type '{self.backend}'"
483
484
485
486
487
488
489
490
491
492
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
                getattr(config, "model_type")
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
493
                self.backend = "seq2seq"
494
                eval_logger.debug(f"Using model type '{self.backend}'")
495
496
497
            elif (
                getattr(self.config, "model_type") in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
            ):
498
                self.backend = "causal"
499
                eval_logger.debug(f"Using model type '{self.backend}'")
500
501
502
503
504
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
505
                        "Setting backend to causal"
506
507
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
508
509
510
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
511
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
512
                )
513

514
515
516
517
518
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
519
520
521
522
523
524

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
525
        gguf_file: Optional[str] = None,
526
        subfolder: str = "",
527
    ) -> None:
528
        """Return the model config for HuggingFace models"""
529
530
531
532
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
533
            gguf_file=gguf_file,
534
            subfolder=subfolder,
535
536
537
538
539
540
541
542
543
544
545
546
        )

    def _create_model(
        self,
        pretrained: str,
        revision: Optional[str] = "main",
        dtype: Optional[Union[str, torch.dtype]] = "auto",
        trust_remote_code: Optional[bool] = False,
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
        parallelize: Optional[bool] = False,
547
        gpus: Optional[int] = None,
548
549
550
        max_memory_per_gpu: Optional[Union[int, str]] = None,
        max_cpu_memory: Optional[Union[int, str]] = None,
        offload_folder: Optional[str] = "./offload",
551
        # PEFT, delta weights and quantization options
552
        peft: Optional[str] = None,
553
        delta: Optional[str] = None,
554
        autogptq: Optional[Union[bool, str]] = False,
555
        gptqmodel: Optional[bool] = False,
556
        gguf_file: Optional[str] = None,
557
        quantization_config: Optional[Dict[str, Any]] = None,
558
        subfolder: str = "",
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        **kwargs,
    ) -> None:
        """
        Initializes an HF or HF-compatible PreTrainedModel from scratch
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

        model_kwargs = kwargs if kwargs else {}

Nathan Habib's avatar
Nathan Habib committed
575
576
577
578
579
580
581
582
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
                device_map=kwargs.get("device_map", None),
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
583
            )
Nathan Habib's avatar
Nathan Habib committed
584
        )
585

586
        if not autogptq and not gptqmodel:
587
            if model_kwargs.get("load_in_4bit", None):
Baber Abbasi's avatar
Baber Abbasi committed
588
589
590
                assert transformers.__version__ >= "4.30.0", (
                    "load_in_4bit requires transformers >= 4.30.0"
                )
591
592
593
            if transformers.__version__ >= "4.30.0":
                if model_kwargs.get("load_in_4bit", None):
                    if model_kwargs.get("bnb_4bit_compute_dtype", None):
594
                        model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(
595
596
                            model_kwargs["bnb_4bit_compute_dtype"]
                        )
Nathan Habib's avatar
Nathan Habib committed
597

598
599
600
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
601
                torch_dtype=get_dtype(dtype),
602
                trust_remote_code=trust_remote_code,
603
                gguf_file=gguf_file,
604
                quantization_config=quantization_config,
605
                subfolder=subfolder,
606
607
608
                **model_kwargs,
            )
        else:
609
610
611
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
612
613
                )

614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
                    )

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
                    )

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
645

646
647
648
649
650
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

651
652
        if peft:
            if model_kwargs.get("load_in_4bit", None):
WoosungMyung's avatar
WoosungMyung committed
653
654
                if version.parse(PEFT_VERSION) < version.parse("0.4.0"):
                    raise AssertionError("load_in_4bit requires peft >= 0.4.0")
655
656
            if self._model.config.vocab_size != len(self.tokenizer):
                # resize model for LoRAs with added tokens
657
658
659
                eval_logger.info(
                    f"Model config indicates vocab_size='{self._model.config.vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
                )
660
                self._model.resize_token_embeddings(len(self.tokenizer))
661
662
663
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
                except KeyError:
                    raise KeyError(f"Delta model is missing weights for layer: {name}")
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
                    )

            del _model_delta
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

        return None

    def _create_tokenizer(
        self,
        pretrained: Union[str, transformers.PreTrainedModel],
        tokenizer: Optional[
            Union[
                str,
                transformers.PreTrainedTokenizer,
                transformers.PreTrainedTokenizerFast,
            ]
        ],
        revision: Optional[str] = "main",
        trust_remote_code: Optional[bool] = False,
        use_fast_tokenizer: Optional[bool] = True,
703
        gguf_file: Optional[str] = None,
704
        add_bos_token: Optional[bool] = False,
705
        subfolder: Optional[str] = "",
706
707
708
709
710
711
712
    ) -> None:
        """
        Helper method during initialization.

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
713
714
715
716
717
718
719
720
721
722
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
        if gguf_file is not None:
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
723

724
725
726
        if add_bos_token:
            kwargs["add_bos_token"] = True

727
728
729
        if subfolder:
            kwargs["subfolder"] = subfolder

730
731
732
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
733
                    tokenizer, **kwargs
734
735
736
737
738
739
740
741
742
743
744
745
746
747
                )
            else:
                assert isinstance(
                    tokenizer, transformers.PreTrainedTokenizer
                ) or isinstance(tokenizer, transformers.PreTrainedTokenizerFast)
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
748
                model_name, **kwargs
749
750
751
            )
        return None

Ethan Smith's avatar
Ethan Smith committed
752
    def _detect_batch_size(self, requests=None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
753
754
755
756
757
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
758
759
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
760
761
        else:
            max_length = self.max_length
762
763
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
764

Benjamin Fattori's avatar
Benjamin Fattori committed
765
766
767
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
768
            if self.backend == "seq2seq":
769
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
770
771
772
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
773
774
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
775
776
777
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
778
779
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
780
781
782
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
783
            for _ in range(5):
784
785
786
787
788
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
789

Benjamin Fattori's avatar
Benjamin Fattori committed
790
791
            return batch_size

792
793
794
795
796
797
798
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
799

800
801
802
803
804
805
806
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
807
            clear_torch_cache()
808
809
            return batch_size

810
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
811
812
        return batch_size

baberabb's avatar
baberabb committed
813
814
815
    def tok_encode(
        self, string: str, left_truncate_len=None, add_special_tokens=None
    ) -> List[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
816
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
817
818
819
820
821
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
822
        if add_special_tokens is None:
823
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
824
825
826
827
828
829
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
830

Lintang Sutawika's avatar
Lintang Sutawika committed
831
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
832

833
834
835
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
836

837
838
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
839
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
840
841
        self,
        strings: List[str],
lintangsutawika's avatar
lintangsutawika committed
842
        padding_side: str = "left",
843
844
        left_truncate_len: int = None,
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
845
    ) -> Tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
846
847
848
849
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
850
        add_special_tokens = {}
851
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
852
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
853
854
855

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
856
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
857
858
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
859
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
860
861
        )
        if left_truncate_len:
862
863
864
865
866
867
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
                eval_logger.warn(
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
868
869
870
871
872
873
874
875
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Lintang Sutawika's avatar
Lintang Sutawika committed
876
877
    def tok_decode(self, tokens, skip_special_tokens=True):
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
878
879
880

    def _model_call(self, inps, attn_mask=None, labels=None):
        """
haileyschoelkopf's avatar
haileyschoelkopf committed
881
        :param inps: torch.Tensor
882
883
884
885
886
887
888
889
890
891
892
893
894
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
        with torch.no_grad():
895
896
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
897
                assert self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM
haileyschoelkopf's avatar
haileyschoelkopf committed
898
899
900
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits
901
            else:
902
903
904
905
                assert self.AUTO_MODEL_CLASS in (
                    transformers.AutoModelForCausalLM,
                    transformers.AutoModelForVision2Seq,
                )
906
907
908
                return self.model(inps).logits

    def _model_generate(self, context, max_length, stop, **generation_kwargs):
Baber Abbasi's avatar
Baber Abbasi committed
909
        # temperature = 0.0 if not set
910
911
912
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
913
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
914
        do_sample = generation_kwargs.get("do_sample", None)
915
916
917
918
919

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
920
921
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
922
923
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
924
            self.tokenizer, stop, context.shape[1], context.shape[0]
925
        )
926
        return self.model.generate(
927
            input_ids=context,
928
929
            max_length=max_length,
            stopping_criteria=stopping_criteria,
930
            pad_token_id=self.tokenizer.pad_token_id,
931
932
933
            use_cache=True,
            **generation_kwargs,
        )
934

Baber Abbasi's avatar
Baber Abbasi committed
935
936
937
    def _select_cont_toks(
        self, logits: torch.Tensor, contlen: int = None, inplen: int = None
    ) -> torch.Tensor:
938
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
939
940
941
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
942
943
944
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
945
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
946
947
948
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
949
            # only discard right-padding.
950
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
951
952
            logits = logits[:contlen]

953
954
        return logits

955
956
957
    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
958
959
960
961
962
963
964
965
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

966
967
968
969
970
971
972
973
974
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
975
        ):
976
            rolling_token_windows: List[Tuple[List[int], List[int]]] = list(
977
978
979
980
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
981
                        prefix_token=self.prefix_token_id,
982
983
984
985
986
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
987
988

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
989
            windows = [(None,) + x for x in rolling_token_windows]
990

991
992
993
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
994

995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1015
            )
1016
1017
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
1018

1019
1020
1021
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1022

1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1038

1039
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1054
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1055
1056
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1057

Ethan Smith's avatar
Ethan Smith committed
1058
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1059
1060
1061
1062
1063
        self,
        requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
        disable_tqdm: bool = False,
        override_bs: int = None,
    ) -> List[Tuple[float, bool]]:
1064
1065
1066
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1067
        def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
Baber Abbasi's avatar
Baber Abbasi committed
1068
            """Defines the key for the sorted method"""
1069
1070
1071
1072
1073
1074
1075
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1076
            toks = req[1] + req[2]
1077
1078
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1079
1080
1081
        def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
            """Defines the key to group and lookup one-token continuations"""
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1082
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1083
1084
1085
1086
1087
1088
1089
1090
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1091
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1092
1093
1094
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1095
1096
1097

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1098
1099
1100
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1101
1102
1103
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1104
1105
1106
1107
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1108
1109
1110
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1111
            else None
1112
1113
        )

Baber Abbasi's avatar
Baber Abbasi committed
1114
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1115
1116
1117
1118
1119
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1120
        for chunk in chunks:
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1140
                # how this all works (illustrated on a causal decoder-only setup):
1141
1142
1143
1144
1145
1146
1147
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1148
                if self.backend == "causal":
1149
1150
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1151
                        eval_logger.warning(
1152
1153
1154
1155
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1156
1157
1158
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1159
1160
                        device=self.device,
                    )
1161
                    (inplen,) = inp.shape
1162
                elif self.backend == "seq2seq":
1163
1164
1165
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1166
                        device=self.device,
1167
                    )
1168
                    (inplen,) = inp.shape
1169
1170
1171
1172

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1173
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1174
                        (continuation_enc)[-self.max_length :],
1175
1176
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1177
                        dtype=torch.long,
1178
1179
                        device=self.device,
                    )
1180
1181
                    (contlen,) = cont.shape

1182
1183
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1184
1185
1186
1187
1188
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1189

haileyschoelkopf's avatar
haileyschoelkopf committed
1190
1191
1192
1193
1194
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1195
1196
1197
1198

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1199

1200
1201
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1202
            if self.backend == "causal":
1203
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1204
1205
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1206
            elif self.backend == "seq2seq":
1207
                # TODO: left-pad encoder inps and mask?
1208
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1209
1210
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1211
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1212
1213
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1214
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1215
1216
1217
1218
1219
1220
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1221
1222

            multi_logits = F.log_softmax(
1223
1224
1225
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1226
            )  # [batch, padding_length (inp or cont), vocab]
1227

Baber Abbasi's avatar
Baber Abbasi committed
1228
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1229
1230
1231
1232
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1233
                # take only logits in the continuation
1234
                # (discard context toks if decoder-only ; discard right-padding)
1235
1236
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1237
                ctx_len = (
1238
                    inplen + (logits.shape[0] - padding_len_inp)
1239
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1240
1241
                    else None
                )
1242
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1243
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1244
1245
1246
1247

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
                for request_str, cont_toks, logits in re_ord.get_cache(
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1262
1263
1264
1265
1266
1267
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1280
1281
1282
1283
1284
1285
1286
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1287
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1288
1289

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1290

1291
1292
        return re_ord.get_original(res)

1293
1294
1295
    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1296
        res = []
1297

Baber Abbasi's avatar
Baber Abbasi committed
1298
        def _collate(req: Tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1299
            """Defines the key for the sorted method"""
1300
1301
1302
1303
1304
1305
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1306
1307
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1308

1309
1310
        pbar = tqdm(
            total=len(requests),
1311
            disable=(disable_tqdm or (self.rank != 0)),
1312
1313
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1314
        adaptive_batch_size = None
1315
1316
1317
1318
1319
1320
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1321
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1334

Baber Abbasi's avatar
Baber Abbasi committed
1335
1336
1337
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1338
1339
1340
1341
1342
1343
1344
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1345
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1346
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1347
1348
1349
1350
1351
1352
1353
1354
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1355
1356
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1357
1358
            else:
                raise ValueError(
Baber Abbasi's avatar
Baber Abbasi committed
1359
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1360
                )
Baber Abbasi's avatar
Baber Abbasi committed
1361
1362
1363
1364
1365
1366
            if "max_gen_toks" in kwargs.keys():
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1367
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1368
1369
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1370
1371
1372
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1373
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1385

Baber Abbasi's avatar
Baber Abbasi committed
1386
1387
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1388

Baber Abbasi's avatar
Baber Abbasi committed
1389
1390
1391
1392
1393
1394
1395
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1396

Baber Abbasi's avatar
Baber Abbasi committed
1397
1398
1399
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1400
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1401
                    cont_toks = cont_toks[context_enc.shape[1] :]
1402

Baber Abbasi's avatar
Baber Abbasi committed
1403
                s = self.tok_decode(cont_toks)
1404

Baber Abbasi's avatar
Baber Abbasi committed
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
                # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
                for term in until:
                    if len(term) > 0:
                        # ignore '' separator,
                        # for seq2seq case where self.tok_decode(self.eot_token_id) = ''
                        s = s.split(term)[0]

                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1418

1419
        pbar.close()
1420

Baber Abbasi's avatar
Baber Abbasi committed
1421
        return res
1422

Baber Abbasi's avatar
Baber Abbasi committed
1423
1424
1425
    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> str:
KonradSzafer's avatar
KonradSzafer committed
1426
1427
1428
        """
        Method to apply a chat template to a list of chat history between user and model.
        """
1429
1430
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1431
1432
1433
1434
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1435
1436
1437
1438
1439
1440
1441
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1442
1443
1444
1445
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1446
1447
1448
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1449

1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
    def get_model_info(self) -> dict:
        """
        Method to get Hugging Face model information for experiment reproducibility.
        """

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1474
                eval_logger.debug(
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info