evaluator.py 12.1 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
3
import numpy as np
Leo Gao's avatar
Leo Gao committed
4
import random
Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
Stephen Hogg's avatar
Stephen Hogg committed
9
from lm_eval.utils import positional_deprecated, run_task_tests
10

Fabrizio Milo's avatar
Fabrizio Milo committed
11

12
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
    decontamination_ngrams_path=None,
):
27

28
    """Instantiate and evaluate a model on a list of tasks.
29

30
31
32
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
33
        String arguments for each model class, see LM.create_from_arg_string.
34
35
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
36
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
37
38
39
40
41
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
42
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
43
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
44
        Whether or not to cache
45
46
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
47
48
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
49
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
50
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
51
52
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
53
    :return
54
        Dictionary of results
55
    """
56
57
58
    random.seed(1234)
    np.random.seed(1234)

59
60
61
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
62
63
64
65
66
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
            model_args, {"batch_size": batch_size, "device": device}
        )
67
68
69
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
70
71

    if not no_cache:
72
        lm = lm_eval.base.CachingLM(
Fabrizio Milo's avatar
Fabrizio Milo committed
73
74
75
76
77
78
            lm,
            "lm_cache/"
            + model
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
79
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
80

81
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
82

Stephen Hogg's avatar
Stephen Hogg committed
83
    if check_integrity:
84
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
85

86
87
88
89
90
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
91
        bootstrap_iters=bootstrap_iters,
92
        description_dict=description_dict,
Fabrizio Milo's avatar
Fabrizio Milo committed
93
        decontamination_ngrams_path=decontamination_ngrams_path,
94
    )
95
96
97
98
99
100
101
102
103
104

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
105
        "bootstrap_iters": bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
106
        "description_dict": description_dict,
107
108
109
    }

    return results
Leo Gao's avatar
Leo Gao committed
110

Fabrizio Milo's avatar
Fabrizio Milo committed
111

112
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
113

Fabrizio Milo's avatar
Fabrizio Milo committed
114

115
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
116
117
118
119
120
121
122
123
124
125
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    decontamination_ngrams_path=None,
):
126
127
128
129
130
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
131
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
132
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
133
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
134
135
136
137
138
139
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
140
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
141
        Dictionary of custom task descriptions of the form: `task_name: description`
142
143
144
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
145
146
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

147
148
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
149
150
    if provide_description is not None:
        # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
151
152
153
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
154

Leo Gao's avatar
Leo Gao committed
155
    decontaminate = decontamination_ngrams_path is not None
156

157
158
159
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
Fabrizio Milo's avatar
Fabrizio Milo committed
160
        if (task.has_validation_docs() or task.has_test_docs())
161
    ]
Leo Gao's avatar
Leo Gao committed
162
163

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
164
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
165
166
167
168

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

Fabrizio Milo's avatar
Fabrizio Milo committed
169
    overlaps = collections.defaultdict(list)  # {task_name: contaminated_docs}
170

171
172
173
174
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
175
176
177
178

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

179
180
    docs_for_decontamination = collections.defaultdict(list)

181
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
182
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
183
        versions[task_name] = task.VERSION
184
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
185
186
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
187
            task_doc_func = task.test_docs
Fabrizio Milo's avatar
Fabrizio Milo committed
188
            task_set = "test"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
189
        elif task.has_validation_docs():
Fabrizio Milo's avatar
Fabrizio Milo committed
190
            task_set = "val"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
191
            task_doc_func = task.validation_docs
192
193
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
194

Leo Gao's avatar
Leo Gao committed
195
196
197
198
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
199
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
200

Fabrizio Milo's avatar
Fabrizio Milo committed
201
202
203
204
205
        description = (
            description_dict[task_name]
            if description_dict and task_name in description_dict
            else ""
        )
206
207
        if limit is not None:
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
208

Leo Gao's avatar
Leo Gao committed
209
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
210
211

            if decontaminate and task.should_decontaminate():
Fabrizio Milo's avatar
Fabrizio Milo committed
212
213
214
                docs_for_decontamination[(task_name, task_set)].append(
                    task.doc_to_decontamination_query(doc)
                )
215

Leo Gao's avatar
Leo Gao committed
216
217
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
Fabrizio Milo's avatar
Fabrizio Milo committed
218
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
219
220
            )
            reqs = task.construct_requests(doc, ctx)
221
222
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
223
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
224
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
225
226
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
227
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
228

229
230
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
231
        from lm_eval.decontamination.decontaminate import get_train_overlap
jon-tow's avatar
jon-tow committed
232

233
        print("Finding train/test overlap, please wait...")
Fabrizio Milo's avatar
Fabrizio Milo committed
234
235
236
        overlaps = get_train_overlap(
            docs_for_decontamination, decontamination_ngrams_path, limit
        )
237

Leo Gao's avatar
Leo Gao committed
238
239
240
241
242
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
243
244
245
246
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
247

Leo Gao's avatar
Leo Gao committed
248
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
249
        resps = getattr(lm, reqtype)([req.args for req in reqs])
Fabrizio Milo's avatar
Fabrizio Milo committed
250
251
252
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
253
254
255

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
Fabrizio Milo's avatar
Fabrizio Milo committed
256

Leo Gao's avatar
Leo Gao committed
257
258
259
260
261
262
263
264
265
266
267
268
269
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
270
271
272
273
274

            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Fabrizio Milo's avatar
Fabrizio Milo committed
275

Leo Gao's avatar
Leo Gao committed
276
277
278
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
Fabrizio Milo's avatar
Fabrizio Milo committed
279
        real_metric = metric  # key when looking up the metric with task.aggregation
280
        if metric.endswith(decontaminate_suffix):
Fabrizio Milo's avatar
Fabrizio Milo committed
281
282
283
            real_metric = metric.replace(
                decontaminate_suffix, ""
            )  # decontaminated still uses the same metric
284
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
285

286
287
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
288

289
        stderr = lm_eval.metrics.stderr_for_metric(
290
            metric=task.aggregation()[real_metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
291
292
293
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
294
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
295

Leo Gao's avatar
Leo Gao committed
296
297
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
298
299

    return {"results": dict(results), "versions": dict(versions)}
300
301
302


def make_table(result_dict):
303
    """Generate table of results."""
304
305
306
307
308
309
310
311
312
313
314
315
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
316
317
            if m.endswith("_stderr"):
                continue
318
319
320

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
Fabrizio Milo's avatar
Fabrizio Milo committed
321
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
322
            else:
Fabrizio Milo's avatar
Fabrizio Milo committed
323
                values.append([k, version, m, "%.4f" % v, "", ""])
324
325
326
327
328
329
330
331
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

332
    return md_writer.dumps()