evaluator.py 11.5 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
Leo Gao's avatar
Leo Gao committed
4
import lm_eval.metrics
5
6
7
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
8
import lm_eval.decontamination
9
import numpy as np
10
from lm_eval.utils import positional_deprecated
11

12
@positional_deprecated
13
def simple_evaluate(model, model_args=None, tasks=[],
14
                    num_fewshot=0, batch_size=None, device=None,
15
                    no_cache=False, limit=None, bootstrap_iters=100000,
Leo Gao's avatar
Leo Gao committed
16
                    description_dict=None, decontamination_ngrams_path=None):
17
    """Instantiate and evaluate a model on a list of tasks.
18

19
20
21
22
23
24
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
        String arguments for each model class, see LM.create_from_arg_string. 
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
25
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
26
27
28
29
30
    :param num_fewshot: int
        Number of examples in few-shot context
    :param batch_size: int, optional
        Batch size for model
    :param device: str, optional
31
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
32
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
33
        Whether or not to cache
34
35
36
37
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
38
    :param description_dict: dict[str, str]
39
        Dictionary of custom task descriptions of the form: `task_name: description` 
40
    :return
41
        Dictionary of results
42
    """
43
44
45
    random.seed(1234)
    np.random.seed(1234)

46
47
48
49
50
51
52
53
54
55
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
        if model_args is None: model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(model_args, {
            'batch_size': batch_size, 'device': device
        })
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
56
57

    if not no_cache:
58
59
60
        lm = lm_eval.base.CachingLM(
            lm, 'lm_cache/' + model + '_' + model_args.replace('=', '-').replace(',', '_').replace('/', '-') + '.db'
        )
61
    
62
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
63

64
65
66
67
68
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
69
        description_dict=description_dict,
Leo Gao's avatar
Leo Gao committed
70
        decontamination_ngrams_path=decontamination_ngrams_path, 
71
    )
72
73
74
75
76
77
78
79
80
81

    # add info about the model and few shot config
    results["config"] = {
        "model": model,
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
82
83
        "bootstrap_iters": bootstrap_iters,
        "description_dict": description_dict
84
85
86
    }

    return results
Leo Gao's avatar
Leo Gao committed
87

88
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
89

90
@positional_deprecated
91
def evaluate(lm, task_dict, provide_description=None, num_fewshot=0, limit=None, bootstrap_iters=100000, description_dict=None,
Leo Gao's avatar
Leo Gao committed
92
             decontamination_ngrams_path=None):
93
94
95
96
97
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
98
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
99
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
100
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
101
102
103
104
105
106
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
107
    :param description_dict: dict[str, str]
108
        Dictionary of custom task descriptions of the form: `task_name: description` 
109
110
111
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
112
113
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

114
115
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
116
117
118
    if provide_description is not None:
        # nudge people to not specify it at all
        print("WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict")
119

Leo Gao's avatar
Leo Gao committed
120
    decontaminate = decontamination_ngrams_path is not None
121

122
123
124
125
126
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
        if(task.has_validation_docs() or task.has_test_docs())
    ]
Leo Gao's avatar
Leo Gao committed
127
128

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
129
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
130
131
132
133

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

134
135
    overlaps = collections.defaultdict(list) # {task_name: contaminated_docs}

136
137
138
139
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
140
141
142
143

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}

144
145
    docs_for_decontamination = collections.defaultdict(list)

146
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
147
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
148
        versions[task_name] = task.VERSION
149
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
150
151
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
152
            task_doc_func = task.test_docs
153
            task_set = "test" # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
154
        elif task.has_validation_docs():
155
            task_set = "val" # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
156
            task_doc_func = task.validation_docs
157
158
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
159

Leo Gao's avatar
Leo Gao committed
160
161
162
163
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
164
        rnd.shuffle(task_docs)
Leo Gao's avatar
Leo Gao committed
165

166
167
        description = description_dict[task_name] if description_dict and task_name in description_dict else ""

Leo Gao's avatar
Leo Gao committed
168
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
169
170
171
172

            if decontaminate and task.should_decontaminate():
                docs_for_decontamination[(task_name, task_set)].append(task.doc_to_decontamination_query(doc))

Leo Gao's avatar
Leo Gao committed
173
174
175
176
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
                doc=doc,
                num_fewshot=num_fewshot,
177
178
                rnd=rnd,
                description=description
Leo Gao's avatar
Leo Gao committed
179
180
            )
            reqs = task.construct_requests(doc, ctx)
181
182
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
183
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
184
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
185
186
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
187
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
188

189
190
191
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
        print("Finding train/test overlap, please wait...")
Leo Gao's avatar
Leo Gao committed
192
        overlaps = lm_eval.decontamination.get_train_overlap(docs_for_decontamination, decontamination_ngrams_path, limit)
193

Leo Gao's avatar
Leo Gao committed
194
195
196
197
198
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
199
200
201
202
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
203

Leo Gao's avatar
Leo Gao committed
204
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        resps = getattr(lm, reqtype)([req.args for req in reqs])
        resps = [x if req.index is None else x[req.index] for x, req in zip(resps, reqs)]

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
    
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
224
225
226
227
228

            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Leo Gao's avatar
Leo Gao committed
229
230
231
232
    
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
233
234
235
236
        real_metric = metric # key when looking up the metric with task.aggregation
        if metric.endswith(decontaminate_suffix):
            real_metric = metric.replace(decontaminate_suffix, "") # decontaminated still uses the same metric
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
237

238
239
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
240

241
        stderr = lm_eval.metrics.stderr_for_metric(
242
            metric=task.aggregation()[real_metric],
243
244
            bootstrap_iters=min(bootstrap_iters, 1000) if metric in ["bleu", "chrf", "ter"] else bootstrap_iters,
        )
245
        
Leo Gao's avatar
Leo Gao committed
246
247
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Leo Gao's avatar
Leo Gao committed
248
    
Leo Gao's avatar
Leo Gao committed
249
    return {
250
251
        "results": dict(results),
        "versions": dict(versions)
Leo Gao's avatar
Leo Gao committed
252
    }
253
254
255


def make_table(result_dict):
256
    """Generate table of results."""
257
258
259
260
261
262
263
264
265
266
267
268
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
269
270
            if m.endswith("_stderr"):
                continue
271
272
273
274
275
276
277
278
279
280
281
282
283
284

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
                values.append([k, version, m, '%.4f' % v, '±', '%.4f' % se])
            else:
                values.append([k, version, m, '%.4f' % v, '', ''])
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

285
    return md_writer.dumps()