"...megatron/deprecated_data_utils/wordpiece.py" did not exist on "aebde649e30016aa33b2e1345cb22210a2e49b04"
huggingface.py 64.8 KB
Newer Older
1
2
from __future__ import annotations

3
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
4
import logging
5
import os
Baber Abbasi's avatar
Baber Abbasi committed
6
from collections.abc import Iterator, Sequence
Jeevan's avatar
Jeevan committed
7
from datetime import timedelta
8
from pathlib import Path
Baber Abbasi's avatar
Baber Abbasi committed
9
from typing import TYPE_CHECKING, Any, Literal
10

11
import jinja2
12
import torch
13
import torch.nn.functional as F
14
import transformers
Jeevan's avatar
Jeevan committed
15
16
17
18
19
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
20
from accelerate.utils import get_max_memory
21
from huggingface_hub import HfApi
22
from packaging import version
Baber Abbasi's avatar
Baber Abbasi committed
23
from packaging.version import parse as vparse
24
from tqdm import tqdm
25
26
27
28
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
29
30

from lm_eval import utils
31
from lm_eval.api.model import TemplateLM
32
from lm_eval.api.registry import register_model
33
34
35
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
36
    configure_pad_token,
37
    get_dtype,
38
    handle_stop_sequences,
39
    pad_and_concat,
40
    postprocess_generated_text,
41
42
    stop_sequences_criteria,
)
43

44

45
if TYPE_CHECKING:
Baber Abbasi's avatar
Baber Abbasi committed
46
47
48
    from transformers.quantizers.auto import AutoQuantizationConfig

    from lm_eval.api.instance import Instance
49

Lintang Sutawika's avatar
Lintang Sutawika committed
50
eval_logger = logging.getLogger(__name__)
Baber Abbasi's avatar
Baber Abbasi committed
51
TOKENIZER_INFINITY = 1000000000000000019884624838656
52

lintangsutawika's avatar
lintangsutawika committed
53

54
@register_model("hf-auto", "hf", "huggingface")
55
class HFLM(TemplateLM):
Baber Abbasi's avatar
Baber Abbasi committed
56
    """An abstracted Huggingface model class. Enables usage with both models of
57
58
59
60
61
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

62
    AUTO_MODEL_CLASS = None
63
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
64

65
66
    def __init__(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
67
        pretrained: str | transformers.PreTrainedModel,
68
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
69
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
Baber Abbasi's avatar
Baber Abbasi committed
70
        revision: str | None = "main",
71
        subfolder: str = "",
Baber Abbasi's avatar
Baber Abbasi committed
72
73
74
75
76
        tokenizer: str
        | transformers.PreTrainedTokenizer
        | transformers.PreTrainedTokenizerFast
        | None = None,
        truncation: bool | None = False,
Baber Abbasi's avatar
Baber Abbasi committed
77
        logits_cache: bool = True,
Baber Abbasi's avatar
Baber Abbasi committed
78
79
80
81
82
83
84
85
86
87
88
        max_length: int | None = None,
        device: str | None = "cuda",
        dtype: str | torch.dtype | None = "auto",
        softmax_dtype: str | torch.dtype | None = None,
        mixed_precision_dtype: str | torch.dtype | None = None,
        batch_size: int | str | None = 1,
        max_batch_size: int | None = 64,
        trust_remote_code: bool | None = False,
        use_fast_tokenizer: bool | None = True,
        add_bos_token: bool | None = False,
        prefix_token_id: int | None = None,
89
        # arguments used for splitting a model across GPUs naively.
90
        # only used if `parallelize=True`.
Baber Abbasi's avatar
Baber Abbasi committed
91
92
93
94
        parallelize: bool | None = False,
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | os.PathLike | None = "./offload",
95
        # PEFT, delta weights and quantization options
Baber Abbasi's avatar
Baber Abbasi committed
96
97
98
99
100
        peft: str | None = None,
        delta: str | None = None,
        autogptq: bool | str | None = False,
        gptqmodel: bool | None = False,
        gguf_file: str | None = None,
101
102
        # end token for thinking, either the string or int token id.
        # splits to get response after this token (if provided).
Baber Abbasi's avatar
Baber Abbasi committed
103
        think_end_token: str | int | None = None,
104
        enable_thinking: bool | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
105
        chat_template_args: dict[str, Any] | None = None,
106
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
107
    ) -> None:
108
        super().__init__()
109
110
111
112
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
113
            )
Baber Abbasi's avatar
Baber Abbasi committed
114
115
116
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
117
118
119
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
120
            gpus = 0
121

122
        else:
123
124
125
126
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

Jeevan's avatar
Jeevan committed
127
128
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
129
130
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
131

kaixuanliu's avatar
kaixuanliu committed
132
133
134
135
136
            # Detect device count based on accelerator device type
            device_type = accelerator.device.type
            if "cuda" in device_type:
                gpus = torch.cuda.device_count()
            elif "npu" in device_type:
137
                gpus = torch.npu.device_count()
kaixuanliu's avatar
kaixuanliu committed
138
139
140
141
142
            elif "xpu" in device_type:
                gpus = torch.xpu.device_count()
            else:
                # Fallback to CUDA count for compatibility
                gpus = torch.cuda.device_count()
143

Nathan Habib's avatar
Nathan Habib committed
144
            # using one process with no model parallelism
145
146
147
148
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
149
                    + [f"cuda:{i}" for i in range(gpus)]
150
                    + ["mps", "mps:0"]
151
                    + [f"npu:{i}" for i in range(gpus)]
kaixuanliu's avatar
kaixuanliu committed
152
                    + [f"xpu:{i}" for i in range(gpus)]
153
                )
154
                if device and device in device_list:
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
171
            else:  # Parallelism managed by accelerate
172
173
174
175
176
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
177
178
179
180
181
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
182

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
183
            revision = str(revision)  # cast to string if not already one
184

185
            self._get_config(
186
187
188
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
189
                gguf_file=gguf_file,
190
                subfolder=subfolder,
191
192
            )

193
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
194
195
196
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
197

198
199
200
201
202
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
203
            subfolder=subfolder,
204
205
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
206
            gguf_file=gguf_file,
207
            add_bos_token=add_bos_token,
208
209
        )

210
211
212
213
214
215
216
        if (
            quantization_config := getattr(self.config, "quantization_config", None)
        ) is not None and isinstance(quantization_config, dict):
            from transformers.quantizers import AutoQuantizationConfig

            quantization_config = AutoQuantizationConfig.from_dict(quantization_config)

217
218
219
220
221
222
223
224
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
225
                gpus=gpus,
226
227
228
229
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
230
                delta=delta,
231
                autogptq=autogptq,
232
                gptqmodel=gptqmodel,
233
                gguf_file=gguf_file,
234
                quantization_config=quantization_config,
235
                subfolder=subfolder,
236
                **kwargs,
237
238
            )

239
        # access self._model through self.model property outside this method
240
241
242
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
243

244
245
246
247
248
        self.think_end_token = (
            int(think_end_token)
            if (isinstance(think_end_token, str) and think_end_token.isdigit())
            else think_end_token
        )
lintangsutawika's avatar
lintangsutawika committed
249
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
250
        self.logits_cache = logits_cache
251
        self.vocab_size = self.tokenizer.vocab_size
252
        # select (or create) a pad token to use
253
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
254
255
256
257
258
        self.chat_template_args = (
            chat_template_args or {} | dict(enable_thinking=enable_thinking)
            if enable_thinking is not None
            else {}
        )
259

260
        self.add_bos_token = add_bos_token
261
        if "gemma" in getattr(self.config, "model_type", ""):
262
            self.add_bos_token = True
263
            eval_logger.info(
264
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
265
266
            )

267
        self._max_length = max_length
268
269
270
271
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
272
273
274
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
275
276
277
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
278
279
280
281
282
        self.mixed_precision_dtype = (
            get_dtype(mixed_precision_dtype)
            if mixed_precision_dtype is not None
            else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
283
284
285
286
287
288
289

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
290

291
        if isinstance(pretrained, str):
Baber Abbasi's avatar
Baber Abbasi committed
292
293
294
            if (gpus >= 1 or str(self.device) == "mps") and not (
                parallelize or autogptq or hasattr(self, "accelerator")
            ):
Nathan Habib's avatar
Nathan Habib committed
295
                # TODO: can remove this whole snippet except in the mps case, perhaps?
Baber Abbasi's avatar
Baber Abbasi committed
296
297
298
299
300
301
302
303
304
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                    )
305
306
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
307
308
309
310
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
311
                        )
Nathan Habib's avatar
Nathan Habib committed
312
                    elif gpus > accelerator.num_processes:
313
314
315
316
317
318
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
319
320
321
322
323
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

324
                    self._device = torch.device(f"{accelerator.device}")
325
                    self.accelerator = accelerator
326

327
328
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
329
330
331
332
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
333
334
335
336
337
338
339
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
340

341
        self.custom_prefix_token_id = prefix_token_id
342
343
344
345
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
346

Nathan Habib's avatar
Nathan Habib committed
347
348
    def _get_accelerate_args(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
349
350
351
352
353
354
        parallelize: bool | None = None,
        device_map: str | None = "auto",
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | None = "./offload",
        gpus: int | None = None,
Nathan Habib's avatar
Nathan Habib committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
Baber Abbasi's avatar
Baber Abbasi committed
392
393
                max_memory_all_gpus.pop("cpu", None)
                if hasattr(self, "accelerator"):
Nathan Habib's avatar
Nathan Habib committed
394
395
396
397
398
399
400
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
Baber Abbasi's avatar
Baber Abbasi committed
401
402
403
                else:
                    max_memory_per_gpu_map = max_memory_all_gpus

Nathan Habib's avatar
Nathan Habib committed
404
            args["max_memory"] = max_memory_per_gpu_map
405
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
406
            eval_logger.info(
407
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

433
434
435
436
437
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

438
439
440
441
442
443
444
445
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

446
    @property
Baber Abbasi's avatar
Baber Abbasi committed
447
    def eot_token_id(self) -> int:
448
449
450
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

451
    @property
Baber Abbasi's avatar
Baber Abbasi committed
452
    def prefix_token_id(self) -> int:
453
454
455
456
457
458
459
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

460
    @property
Baber Abbasi's avatar
Baber Abbasi committed
461
    def max_length(self) -> int:
462
463
464
465
466
467
468
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
Baber Abbasi's avatar
Baber Abbasi committed
469
            if self.tokenizer.model_max_length == TOKENIZER_INFINITY:
470
471
472
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
473

474
    @property
Ethan Smith's avatar
Ethan Smith committed
475
    def max_gen_toks(self) -> int:
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
494
495
496
497
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

498
499
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
500
        config: transformers.PretrainedConfig | transformers.AutoConfig,
501
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
502
        trust_remote_code: bool | None = False,
503
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
504
505
        """Helper method during initialization.

506
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
507
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
508
509
510

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
511
        """
512

513
514
515
516
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
Baber Abbasi's avatar
Baber Abbasi committed
517
            if backend in ["causal", "seq2seq"]:
518
                self.backend = backend
519
            eval_logger.info(
520
                f"Overrode HF model backend type, and using type '{self.backend}'"
521
522
523
524
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
Baber Abbasi's avatar
Baber Abbasi committed
525
                getattr(config, "model_type", None)
526
527
528
529
530
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
531
                self.backend = "seq2seq"
532
                eval_logger.debug(f"Using model type '{self.backend}'")
533
            elif (
Baber Abbasi's avatar
Baber Abbasi committed
534
                getattr(config, "model_type", None) in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
535
            ):
536
                self.backend = "causal"
537
                eval_logger.debug(f"Using model type '{self.backend}'")
538
539
540
541
542
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
543
                        "Setting backend to causal"
544
545
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
546
547
548
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
549
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
550
                )
551

552
553
554
555
556
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
557
558
559
560
561
562

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
563
        gguf_file: str | None = None,
564
        subfolder: str = "",
565
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
566
        """Return the model config for HuggingFace models."""
567
568
569
570
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
571
            gguf_file=gguf_file,
572
            subfolder=subfolder,
573
574
575
576
577
        )

    def _create_model(
        self,
        pretrained: str,
Baber Abbasi's avatar
Baber Abbasi committed
578
579
580
        revision: str | None = "main",
        dtype: str | torch.dtype | None = "auto",
        trust_remote_code: bool | None = False,
581
582
583
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
Baber Abbasi's avatar
Baber Abbasi committed
584
585
586
587
588
        parallelize: bool | None = False,
        gpus: int | None = None,
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | None = "./offload",
589
        # PEFT, delta weights and quantization options
Baber Abbasi's avatar
Baber Abbasi committed
590
591
592
593
594
595
        peft: str | None = None,
        delta: str | None = None,
        autogptq: bool | str | None = False,
        gptqmodel: bool | None = False,
        gguf_file: str | None = None,
        quantization_config: AutoQuantizationConfig | None = None,
596
        subfolder: str = "",
597
598
        **kwargs,
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
599
        """Initializes an HF or HF-compatible PreTrainedModel from scratch
600
601
602
603
604
605
606
607
608
609
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

Baber Abbasi's avatar
Baber Abbasi committed
610
        model_kwargs = kwargs or {}
611

Nathan Habib's avatar
Nathan Habib committed
612
613
614
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
Baber Abbasi's avatar
Baber Abbasi committed
615
                device_map=kwargs.get("device_map"),
Nathan Habib's avatar
Nathan Habib committed
616
617
618
619
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
620
            )
Nathan Habib's avatar
Nathan Habib committed
621
        )
622

623
        if not autogptq and not gptqmodel:
Baber Abbasi's avatar
Baber Abbasi committed
624
625
            if model_kwargs.get("load_in_4bit"):
                assert vparse(transformers.__version__) >= vparse("4.30.0"), (
Baber Abbasi's avatar
Baber Abbasi committed
626
627
                    "load_in_4bit requires transformers >= 4.30.0"
                )
Baber Abbasi's avatar
Baber Abbasi committed
628
629
                if compute_dtype := model_kwargs.get("bnb_4bit_compute_dtype"):
                    model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(compute_dtype)
Nathan Habib's avatar
Nathan Habib committed
630

631
632
633
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
634
                torch_dtype=get_dtype(dtype),
635
                trust_remote_code=trust_remote_code,
636
                gguf_file=gguf_file,
637
                quantization_config=quantization_config,
638
                subfolder=subfolder,
639
640
641
                **model_kwargs,
            )
        else:
642
643
644
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
645
646
                )

647
648
649
650
651
652
653
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
Baber Abbasi's avatar
Baber Abbasi committed
654
                    ) from exception
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
Baber Abbasi's avatar
Baber Abbasi committed
673
                    ) from exception
674
675
676
677

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
678

679
680
681
682
683
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

684
        if peft:
685
686
687
            from peft import PeftModel
            from peft import __version__ as PEFT_VERSION

Baber Abbasi's avatar
Baber Abbasi committed
688
689
690
691
            if model_kwargs.get("load_in_4bit") and vparse(PEFT_VERSION) < vparse(
                "0.4.0"
            ):
                raise AssertionError("load_in_4bit requires peft >= 0.4.0")
692
693

            # Compatible with Gemma3 (multimodal) and old models
Janna's avatar
Janna committed
694
695
696
            if hasattr(self._model.config, "text_config") and hasattr(
                self._model.config.text_config, "vocab_size"
            ):
697
698
699
                vocab_size = self._model.config.text_config.vocab_size
            else:
                vocab_size = self._model.config.vocab_size
Janna's avatar
Janna committed
700

701
            if vocab_size != len(self.tokenizer):
702
                # resize model for LoRAs with added tokens
703
                eval_logger.info(
704
                    f"Model config indicates vocab_size='{vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
705
                )
706
                self._model.resize_token_embeddings(len(self.tokenizer))
707
708
709
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
Baber Abbasi's avatar
Baber Abbasi committed
725
726
727
728
                except KeyError as e:
                    raise KeyError(
                        f"Delta model is missing weights for layer: {name}"
                    ) from e
729
730
731
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
Baber Abbasi's avatar
Baber Abbasi committed
732
                    ) from e
733
734

            del _model_delta
735
736
737

    def _create_tokenizer(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
738
739
740
741
742
743
744
745
746
747
748
        pretrained: str | transformers.PreTrainedModel,
        tokenizer: str
        | transformers.PreTrainedTokenizer
        | transformers.PreTrainedTokenizerFast
        | None,
        revision: str | None = "main",
        trust_remote_code: bool | None = False,
        use_fast_tokenizer: bool | None = True,
        gguf_file: str | None = None,
        add_bos_token: bool | None = False,
        subfolder: str | None = "",
749
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
750
        """Helper method during initialization.
751
752
753
754

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
755
756
757
758
759
760
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
761
        if not tokenizer and gguf_file is not None:
762
763
764
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
765

766
767
768
        if add_bos_token:
            kwargs["add_bos_token"] = True

769
770
771
        if subfolder:
            kwargs["subfolder"] = subfolder

772
773
774
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
775
                    tokenizer, **kwargs
776
777
778
                )
            else:
                assert isinstance(
Baber Abbasi's avatar
Baber Abbasi committed
779
780
781
782
783
784
                    tokenizer,
                    (
                        transformers.PreTrainedTokenizer,
                        transformers.PreTrainedTokenizerFast,
                    ),
                )
785
786
787
788
789
790
791
792
793
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
794
                model_name, **kwargs
795
796
            )

Baber Abbasi's avatar
Baber Abbasi committed
797
    def _detect_batch_size(self, requests: Sequence | None = None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
798
799
800
801
802
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
803
804
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
805
806
        else:
            max_length = self.max_length
807
808
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
809

Benjamin Fattori's avatar
Benjamin Fattori committed
810
811
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
Baber Abbasi's avatar
Baber Abbasi committed
812
        def forward_batch(batch_size: int):
813
            if self.backend == "seq2seq":
814
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
815
816
817
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
818
819
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
820
821
822
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
823
824
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
825
826
827
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
828
            for _ in range(5):
829
830
831
832
833
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
834

Benjamin Fattori's avatar
Benjamin Fattori committed
835
836
            return batch_size

837
838
839
840
841
842
843
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
844

845
846
847
848
849
850
851
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
852
            clear_torch_cache()
853
854
            return batch_size

855
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
856
857
        return batch_size

baberabb's avatar
baberabb committed
858
    def tok_encode(
Baber Abbasi's avatar
Baber Abbasi committed
859
860
861
862
863
        self,
        string: str,
        left_truncate_len: int | None = None,
        add_special_tokens: bool | None = None,
    ) -> list[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
864
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
865
866
867
868
869
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
870
        if add_special_tokens is None:
871
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
872
873
874
875
876
877
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
878

Lintang Sutawika's avatar
Lintang Sutawika committed
879
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
880

881
882
883
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
884

885
886
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
887
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
888
        self,
Baber Abbasi's avatar
Baber Abbasi committed
889
        strings: list[str],
lintangsutawika's avatar
lintangsutawika committed
890
        padding_side: str = "left",
Baber Abbasi's avatar
Baber Abbasi committed
891
        left_truncate_len: int | None = None,
892
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
893
    ) -> tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
894
895
896
897
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
898
        add_special_tokens = {}
899
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
900
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
901
902
903

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
904
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
905
906
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
907
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
908
909
        )
        if left_truncate_len:
910
911
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
Baber Abbasi's avatar
Baber Abbasi committed
912
                eval_logger.warning(
913
914
915
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
916
917
918
919
920
921
922
923
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Baber Abbasi's avatar
Baber Abbasi committed
924
    def tok_decode(self, tokens: Iterator[list[str]], skip_special_tokens: bool = True):
Lintang Sutawika's avatar
Lintang Sutawika committed
925
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
926

Baber Abbasi's avatar
Baber Abbasi committed
927
928
929
930
931
932
    def _model_call(
        self,
        inps: torch.Tensor,
        attn_mask: torch.Tensor | None = None,
        labels: torch.Tensor | None = None,
    ) -> torch.Tensor:
933
        """
Baber Abbasi's avatar
Baber Abbasi committed
934

haileyschoelkopf's avatar
haileyschoelkopf committed
935
        :param inps: torch.Tensor
936
937
938
939
940
941
942
943
944
945
946
947
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
Baber Abbasi's avatar
Baber Abbasi committed
948
949
950
        with (
            torch.no_grad(),
            torch.autocast(
951
952
953
                device_type=self.device.type,
                dtype=self.mixed_precision_dtype,
                enabled=self.mixed_precision_dtype is not None,
Baber Abbasi's avatar
Baber Abbasi committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
            ),
        ):
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
                assert transformers.AutoModelForSeq2SeqLM == self.AUTO_MODEL_CLASS
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits

            assert self.AUTO_MODEL_CLASS in (
                transformers.AutoModelForCausalLM,
                transformers.AutoModelForVision2Seq,
            )
            return self.model(inps).logits
968

Baber Abbasi's avatar
Baber Abbasi committed
969
970
971
972
973
974
975
    def _model_generate(
        self,
        context,
        max_length: int,
        stop: list[str],
        **generation_kwargs: dict[str, Any],
    ) -> torch.Tensor:
Baber Abbasi's avatar
Baber Abbasi committed
976
        # temperature = 0.0 if not set
977
978
979
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
980
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
Baber Abbasi's avatar
Baber Abbasi committed
981
        do_sample = generation_kwargs.get("do_sample")
982
983
984
985
986

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
987
988
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
989
990
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
991
            self.tokenizer, stop, context.shape[1], context.shape[0]
992
        )
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
        with torch.autocast(
            device_type=self.device.type,
            dtype=self.mixed_precision_dtype,
            enabled=self.mixed_precision_dtype is not None,
        ):
            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )
1006

Baber Abbasi's avatar
Baber Abbasi committed
1007
    def _select_cont_toks(
Baber Abbasi's avatar
Baber Abbasi committed
1008
1009
1010
1011
        self,
        logits: torch.Tensor,
        contlen: int | None = None,
        inplen: int | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
1012
    ) -> torch.Tensor:
1013
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1014
1015
1016
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
1017
1018
1019
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
1020
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1021
1022
1023
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1024
            # only discard right-padding.
1025
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
1026
1027
            logits = logits[:contlen]

1028
1029
        return logits

1030
    def loglikelihood_rolling(
Baber Abbasi's avatar
Baber Abbasi committed
1031
1032
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
1033
1034
1035
1036
1037
1038
1039
1040
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

1041
1042
1043
1044
1045
1046
1047
1048
1049
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
1050
        ):
Baber Abbasi's avatar
Baber Abbasi committed
1051
            rolling_token_windows: list[tuple[list[int], list[int]]] = list(
1052
1053
1054
1055
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
1056
                        prefix_token=self.prefix_token_id,
1057
1058
1059
1060
1061
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1062
1063

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1064
            windows = [(None,) + x for x in rolling_token_windows]
1065

1066
1067
1068
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
1069

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1090
            )
1091
1092
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
1093

1094
1095
1096
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1097

1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1113

1114
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1115

1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1129
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1130
1131
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1132

Ethan Smith's avatar
Ethan Smith committed
1133
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1134
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1135
        requests: list[tuple[tuple[str, str], list[int], list[int]]],
baberabb's avatar
baberabb committed
1136
        disable_tqdm: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1137
1138
        override_bs: int | None = None,
    ) -> list[tuple[float, bool]]:
1139
1140
1141
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1142
1143
        def _collate(req: tuple[tuple[str, str], list[int], list[int]]):
            """Defines the key for the sorted method."""
1144
1145
1146
1147
1148
1149
1150
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1151
            toks = req[1] + req[2]
1152
1153
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1154
1155
        def _lookup_one_token_cont(req: tuple[tuple[str, str], list[int], list[int]]):
            """Defines the key to group and lookup one-token continuations."""
Baber Abbasi's avatar
Baber Abbasi committed
1156
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1157
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1158
1159
1160
1161
1162
1163
1164
1165
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1166
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1167
1168
1169
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1170
1171
1172

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1173
1174
1175
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1176
1177
1178
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1179
1180
1181
1182
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1183
1184
1185
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1186
            else None
1187
1188
        )

Baber Abbasi's avatar
Baber Abbasi committed
1189
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1190
1191
1192
1193
1194
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1195
        for chunk in chunks:
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1215
                # how this all works (illustrated on a causal decoder-only setup):
1216
1217
1218
1219
1220
1221
1222
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1223
                if self.backend == "causal":
1224
1225
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1226
                        eval_logger.warning(
1227
1228
1229
1230
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1231
1232
1233
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1234
1235
                        device=self.device,
                    )
1236
                    (inplen,) = inp.shape
1237
                elif self.backend == "seq2seq":
1238
1239
1240
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1241
                        device=self.device,
1242
                    )
1243
                    (inplen,) = inp.shape
1244
1245
1246
1247

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1248
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1249
                        (continuation_enc)[-self.max_length :],
1250
1251
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1252
                        dtype=torch.long,
1253
1254
                        device=self.device,
                    )
1255
1256
                    (contlen,) = cont.shape

1257
1258
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1259
1260
1261
1262
1263
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1264

haileyschoelkopf's avatar
haileyschoelkopf committed
1265
1266
1267
1268
1269
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1270
1271
1272
1273

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1274

1275
1276
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1277
            if self.backend == "causal":
1278
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1279
1280
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1281
            elif self.backend == "seq2seq":
1282
                # TODO: left-pad encoder inps and mask?
1283
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1284
1285
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1286
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1287
1288
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1289
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1290
1291
1292
1293
1294
1295
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1296
1297

            multi_logits = F.log_softmax(
1298
1299
1300
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1301
            )  # [batch, padding_length (inp or cont), vocab]
1302

Baber Abbasi's avatar
Baber Abbasi committed
1303
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1304
1305
1306
1307
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1308
                # take only logits in the continuation
1309
                # (discard context toks if decoder-only ; discard right-padding)
1310
1311
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1312
                ctx_len = (
1313
                    inplen + (logits.shape[0] - padding_len_inp)
1314
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1315
1316
                    else None
                )
1317
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1318
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1319
1320
1321
1322

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1323
1324
1325
1326
1327
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
Baber Abbasi's avatar
Baber Abbasi committed
1328
                for request_str, cont_toks, logits in re_ord.get_cache(  # noqa
Baber Abbasi's avatar
Baber Abbasi committed
1329
1330
1331
1332
1333
1334
1335
1336
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1337
1338
1339
1340
1341
1342
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1355
1356
1357
1358
1359
1360
1361
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1362
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1363
1364

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1365

1366
1367
        return re_ord.get_original(res)

1368
    def generate_until(
Baber Abbasi's avatar
Baber Abbasi committed
1369
1370
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1371
        res = []
1372

Baber Abbasi's avatar
Baber Abbasi committed
1373
        def _collate(req: tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1374
            """Defines the key for the sorted method"""
1375
1376
1377
1378
1379
1380
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1381
1382
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1383

1384
1385
        pbar = tqdm(
            total=len(requests),
1386
            disable=(disable_tqdm or (self.rank != 0)),
1387
1388
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1389
        adaptive_batch_size = None
1390
1391
1392
1393
1394
1395
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1396
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1409

Baber Abbasi's avatar
Baber Abbasi committed
1410
1411
1412
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1413
1414
1415
1416
1417
1418
1419
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1420
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1421
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1422
1423
1424
1425
1426
1427
1428
1429
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1430
1431
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1432
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1433
                raise TypeError(
Baber Abbasi's avatar
Baber Abbasi committed
1434
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1435
                )
Baber Abbasi's avatar
Baber Abbasi committed
1436
            if "max_gen_toks" in kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
1437
1438
1439
1440
1441
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1442
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1443
1444
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1445
1446
1447
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1448
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1460

Baber Abbasi's avatar
Baber Abbasi committed
1461
1462
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1463

Baber Abbasi's avatar
Baber Abbasi committed
1464
1465
1466
1467
1468
1469
1470
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1471

Baber Abbasi's avatar
Baber Abbasi committed
1472
1473
1474
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1475
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1476
                    cont_toks = cont_toks[context_enc.shape[1] :]
1477

1478
1479
1480
1481
1482
1483
1484
1485
1486
                # Handle integer think_end_token: find last occurrence and strip tokens after it
                if isinstance(self.think_end_token, int):
                    think_token_indices = [
                        i
                        for i, token in enumerate(cont_toks)
                        if token == self.think_end_token
                    ]
                    if think_token_indices:
                        cont_toks = cont_toks[think_token_indices[-1] + 1 :]
1487

1488
                s = self.tok_decode(cont_toks)
Baber Abbasi's avatar
Baber Abbasi committed
1489

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
                # Strip leading whitespace if we removed thinking tokens
                if isinstance(self.think_end_token, int):
                    s = s.lstrip()

                # Apply post-processing: remove stop sequences and string-based thinking tokens
                s = postprocess_generated_text(
                    generation=s,
                    stop=until,
                    think_end_token=self.think_end_token
                    if isinstance(self.think_end_token, str)
                    else None,
                )
Baber Abbasi's avatar
Baber Abbasi committed
1502
1503
1504
1505
1506
1507
                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1508

1509
        pbar.close()
1510

Baber Abbasi's avatar
Baber Abbasi committed
1511
        return res
1512

Baber Abbasi's avatar
Baber Abbasi committed
1513
    def apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1514
        self, chat_history: list[dict[str, str]], add_generation_prompt: bool = True
Baber Abbasi's avatar
Baber Abbasi committed
1515
    ) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
1516
        """Method to apply a chat template to a list of chat history between user and model."""
1517
1518
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1519
1520
1521
1522
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1523
                **self.chat_template_args,
1524
1525
1526
1527
1528
1529
1530
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1531
1532
1533
1534
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1535
                **self.chat_template_args,
1536
1537
1538
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1539

1540
    def get_model_info(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
1541
        """Method to get Hugging Face model information for experiment reproducibility."""
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1562
                eval_logger.debug(
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info