evaluator.py 15.7 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
4

Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
Stephen Hogg's avatar
Stephen Hogg committed
9
from lm_eval.utils import positional_deprecated, run_task_tests
10
11
12
13
from lm_eval.models.gpt2 import HFLM

import numpy as np
import transformers
14

Fabrizio Milo's avatar
Fabrizio Milo committed
15

16
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
17
18
19
20
21
22
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
23
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
24
25
26
27
28
29
30
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
    decontamination_ngrams_path=None,
31
32
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
33
):
34
    """Instantiate and evaluate a model on a list of tasks.
35

36
    :param model: Union[str, LM]
haileyschoelkopf's avatar
haileyschoelkopf committed
37
        Name of model, transformers.PreTrainedModel object, or LM object, see lm_eval.models.get_model
38
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
39
        String arguments for each model class, see LM.create_from_arg_string.
40
41
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
42
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
43
44
    :param num_fewshot: int
        Number of examples in few-shot context
45
    :param batch_size: int or str, optional
46
        Batch size for model
47
48
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
49
    :param device: str, optional
50
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
51
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
52
        Whether or not to cache
53
54
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
55
56
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
57
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
58
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
59
60
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
61
    :param write_out: bool
62
        If True, write details about prompts and logits to json for all tasks
63
    :param output_base_path: str, optional
64
        Directory to which detailed eval info will be written. Defaults to present working dir.
65
    :return
66
        Dictionary of results
67
    """
68
69
70
    random.seed(1234)
    np.random.seed(1234)

71
72
73
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
74
75
76
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
77
            model_args, {"batch_size": batch_size, "max_batch_size": max_batch_size, "device": device}
Fabrizio Milo's avatar
Fabrizio Milo committed
78
        )
79
    elif isinstance(model, transformers.PreTrainedModel):
haileyschoelkopf's avatar
haileyschoelkopf committed
80
        lm = lm_eval.models.get_model("hf-causal")(
81
                pretrained=model,
haileyschoelkopf's avatar
haileyschoelkopf committed
82
                batch_size=batch_size,
83
84
                )
        no_cache = True
85
86
87
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
88
89

    if not no_cache:
90
        lm = lm_eval.base.CachingLM(
Fabrizio Milo's avatar
Fabrizio Milo committed
91
92
            lm,
            "lm_cache/"
93
            + (model if isinstance(model, str) else model.model.config._name_or_path)
Fabrizio Milo's avatar
Fabrizio Milo committed
94
95
96
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
97
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
98

99
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
100

Stephen Hogg's avatar
Stephen Hogg committed
101
    if check_integrity:
102
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
103

104
105
106
107
108
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
109
        bootstrap_iters=bootstrap_iters,
110
        description_dict=description_dict,
Fabrizio Milo's avatar
Fabrizio Milo committed
111
        decontamination_ngrams_path=decontamination_ngrams_path,
112
113
        write_out=write_out,
        output_base_path=output_base_path,
114
    )
115
116

    # add info about the model and few shot config
117
118
119
120
121
    model_name = None
    if isinstance(model, str):
        model_name = model
    elif isinstance(model, transformers.PreTrainedModel):
        model_name = "pretrained=" + model.config._name_or_path
122
    results["config"] = {
123
        "model": model_name,
124
125
126
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
gk's avatar
gk committed
127
        "batch_sizes": list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else [],
128
129
130
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
131
        "bootstrap_iters": bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
132
        "description_dict": description_dict,
133
134
135
    }

    return results
Leo Gao's avatar
Leo Gao committed
136

Fabrizio Milo's avatar
Fabrizio Milo committed
137

138
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
139

Fabrizio Milo's avatar
Fabrizio Milo committed
140

141
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
142
143
144
145
146
147
148
149
150
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    decontamination_ngrams_path=None,
151
152
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
153
):
154
155
156
157
158
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
159
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
160
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
161
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
162
163
164
165
166
167
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
168
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
169
        Dictionary of custom task descriptions of the form: `task_name: description`
170
    :param write_out: bool
171
        If True, write all prompts, logits and metrics to json for offline analysis
172
    :param output_base_path: str, optional
173
        Directory to which detailed eval info will be written. Defaults to present working dir
174
175
176
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
177
178
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

179
180
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
181
182
    if provide_description is not None:
        # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
183
184
185
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
186

Leo Gao's avatar
Leo Gao committed
187
    decontaminate = decontamination_ngrams_path is not None
188

189
190
191
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
Fabrizio Milo's avatar
Fabrizio Milo committed
192
        if (task.has_validation_docs() or task.has_test_docs())
193
    ]
Leo Gao's avatar
Leo Gao committed
194
195

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
196
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
197
198
199
200

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

Fabrizio Milo's avatar
Fabrizio Milo committed
201
    overlaps = collections.defaultdict(list)  # {task_name: contaminated_docs}
202

203
204
205
206
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
207
208
209

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}
Julen Etxaniz's avatar
Julen Etxaniz committed
210
    write_out_info = {}
Leo Gao's avatar
Leo Gao committed
211

212
213
    docs_for_decontamination = collections.defaultdict(list)

214
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
215
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
216
        versions[task_name] = task.VERSION
217
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
218
219
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
220
            task_doc_func = task.test_docs
Fabrizio Milo's avatar
Fabrizio Milo committed
221
            task_set = "test"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
222
        elif task.has_validation_docs():
Fabrizio Milo's avatar
Fabrizio Milo committed
223
            task_set = "val"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
224
            task_doc_func = task.validation_docs
225
226
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
227

Leo Gao's avatar
Leo Gao committed
228
229
230
231
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
232
        rnd.shuffle(task_docs)
233
234
        print(f"Task: {task_name}; number of docs: {len(task_docs)}")

235
        if write_out:
236
            prompt_details = []
Leo Gao's avatar
Leo Gao committed
237

Fabrizio Milo's avatar
Fabrizio Milo committed
238
239
240
241
242
        description = (
            description_dict[task_name]
            if description_dict and task_name in description_dict
            else ""
        )
243
244
        if limit is not None:
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
245

Leo Gao's avatar
Leo Gao committed
246
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
247
            if decontaminate and task.should_decontaminate():
Fabrizio Milo's avatar
Fabrizio Milo committed
248
249
250
                docs_for_decontamination[(task_name, task_set)].append(
                    task.doc_to_decontamination_query(doc)
                )
251

Leo Gao's avatar
Leo Gao committed
252
253
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
Fabrizio Milo's avatar
Fabrizio Milo committed
254
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
255
256
            )
            reqs = task.construct_requests(doc, ctx)
257

258
            if write_out:
259
260
261
262
263
264
265
266
267
                prompt_details.append({"doc_id": doc_id})

            # print the prompt for the first few documents
            if doc_id < 1:
                print(
                    f"Task: {task_name}; document {doc_id}; context prompt (starting on next line):\n{ctx}\n(end of prompt on previous line)"
                )
                print("Requests:", reqs)

268
269
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
270
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
271
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
272
273
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
274
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
275

276
                if write_out:
277
278
279
280
                    prompt_details[-1][f"prompt_{i}"] = "".join(
                        (map(lambda x: "".join(x), req.args))
                    )

281
        if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
282
            write_out_info[task_name] = prompt_details
283

284
285
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
286
        from lm_eval.decontamination.decontaminate import get_train_overlap
jon-tow's avatar
jon-tow committed
287

288
        print("Finding train/test overlap, please wait...")
Fabrizio Milo's avatar
Fabrizio Milo committed
289
290
291
        overlaps = get_train_overlap(
            docs_for_decontamination, decontamination_ngrams_path, limit
        )
292

Leo Gao's avatar
Leo Gao committed
293
294
295
296
297
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
298
299
300
301
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
302

Leo Gao's avatar
Leo Gao committed
303
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
304
        resps = getattr(lm, reqtype)([req.args for req in reqs])
Fabrizio Milo's avatar
Fabrizio Milo committed
305
306
307
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
308
309
310

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
Fabrizio Milo's avatar
Fabrizio Milo committed
311

312
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
313
                write_out_info[task_name][doc_id][f"logit_{i}"] = resp
314
315
                task = task_dict[task_name]
                if isinstance(task, lm_eval.base.MultipleChoiceTask):
Julen Etxaniz's avatar
Julen Etxaniz committed
316
                    write_out_info[task_name][doc_id]["truth"] = doc["gold"]
317
                elif isinstance(task, lm_eval.tasks.winogrande.Winogrande):
Julen Etxaniz's avatar
Julen Etxaniz committed
318
                    write_out_info[task_name][doc_id]["truth"] = task.answer_to_num[
319
320
321
                        doc["answer"]
                    ]
                else:
Julen Etxaniz's avatar
Julen Etxaniz committed
322
                    write_out_info[task_name][doc_id]["truth"] = task.doc_to_target(doc)
323

Leo Gao's avatar
Leo Gao committed
324
325
326
327
328
329
330
331
332
333
334
335
336
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
337

338
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
339
                write_out_info[task_name][doc_id][metric] = str(value)
340

341
342
343
344
            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Fabrizio Milo's avatar
Fabrizio Milo committed
345

Leo Gao's avatar
Leo Gao committed
346
347
348
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
Fabrizio Milo's avatar
Fabrizio Milo committed
349
        real_metric = metric  # key when looking up the metric with task.aggregation
350
        if metric.endswith(decontaminate_suffix):
Fabrizio Milo's avatar
Fabrizio Milo committed
351
352
353
            real_metric = metric.replace(
                decontaminate_suffix, ""
            )  # decontaminated still uses the same metric
354
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
355

356
357
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
358

359
        stderr = lm_eval.metrics.stderr_for_metric(
360
            metric=task.aggregation()[real_metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
361
362
363
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
364
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
365

Leo Gao's avatar
Leo Gao committed
366
367
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
368

369
    if write_out:
370
371
372
        import json
        import pathlib

373
374
375
        output_base_path = (
            pathlib.Path(output_base_path)
            if output_base_path is not None
376
377
378
            else pathlib.Path(".")
        )
        try:
379
            output_base_path.mkdir(parents=True, exist_ok=False)
380
381
382
383
384
        except FileExistsError:
            pass

        for task_name, _ in task_dict_items:
            with open(
Julen Etxaniz's avatar
Julen Etxaniz committed
385
                output_base_path.joinpath(f"{task_name}_write_out_info.json"),
386
387
388
                "w",
                encoding="utf8",
            ) as fp:
Julen Etxaniz's avatar
Julen Etxaniz committed
389
                json.dump(write_out_info[task_name], fp, indent=4, ensure_ascii=False)
390

Fabrizio Milo's avatar
Fabrizio Milo committed
391
    return {"results": dict(results), "versions": dict(versions)}
392
393
394


def make_table(result_dict):
395
    """Generate table of results."""
396
397
398
399
400
401
402
403
404
405
406
407
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
408
409
            if m.endswith("_stderr"):
                continue
410
411
412

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
Fabrizio Milo's avatar
Fabrizio Milo committed
413
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
414
            else:
Fabrizio Milo's avatar
Fabrizio Milo committed
415
                values.append([k, version, m, "%.4f" % v, "", ""])
416
417
418
419
420
421
422
423
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

424
    return md_writer.dumps()