utils.py 11 KB
Newer Older
1
2
3
4
import collections
import fnmatch
import functools
import importlib.util
5
import inspect
6
7
8
9
import logging
import os
import re
from itertools import islice
10
from typing import Any, Callable, List
11

Lintang Sutawika's avatar
Lintang Sutawika committed
12
import numpy as np
13
import yaml
14
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
15

lintangsutawika's avatar
lintangsutawika committed
16

17
18
19
20
21
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
22
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
23

24
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
25
26


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
50
51
52
53
54
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
55
56
57
58
59
60
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
61
62


Jason Phang's avatar
gpt3  
Jason Phang committed
63
64
65
66
67
68
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
69
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
70
71
    if not args_string:
        return {}
72
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
73
74
75
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
76
    return args_dict
Leo Gao's avatar
Leo Gao committed
77

Fabrizio Milo's avatar
Fabrizio Milo committed
78

Leo Gao's avatar
Leo Gao committed
79
80
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
81
        yield from iter
Leo Gao's avatar
Leo Gao committed
82
83


84
85
86
87
88
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
89

90
91
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
92

gakada's avatar
gakada committed
93
94
95
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
96
    if isinstance(patterns, str):
97
98
        patterns = [patterns]

gakada's avatar
gakada committed
99
100
101
102
103
104
105
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Lintang Sutawika's avatar
Lintang Sutawika committed
106
107
108
109
110
111
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
112
113
114
115
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
116
117
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
118
    string = re.sub(r" (['.,])", r"\1", string)
119
120
121
    return string


Jason Phang's avatar
Jason Phang committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
149
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
150
151
152
153
154
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
155

Jason Phang's avatar
Jason Phang committed
156
        yield (
lintangsutawika's avatar
lintangsutawika committed
157
158
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
159
160
161
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
162

Leo Gao's avatar
Leo Gao committed
163
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
164
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
165
    a, b = pair
166
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
167

Jason Phang's avatar
Jason Phang committed
168

169
class Reorderer:
baberabb's avatar
baberabb committed
170
171
172
173
174
175
176
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
177
178
179
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
180
181
182
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
183
184
185
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
186

187
    def get_reordered(self):
baberabb's avatar
baberabb committed
188
189
190
191
192
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
193
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
194

195
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
196
197
198
199
200
201
202
203
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
204
205
206
207
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
208
            for ind in inds:
209
210
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
211

212
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
213

214
215
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
216

Ethan Smith's avatar
Ethan Smith committed
217
def make_table(result_dict, column: str = "results"):
218
    """Generate table of results."""
219
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
220

lintangsutawika's avatar
lintangsutawika committed
221
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
222
223
224
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
225

lintangsutawika's avatar
lintangsutawika committed
226
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
227
        column_name,
lintangsutawika's avatar
lintangsutawika committed
228
229
        "Version",
        "Filter",
230
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
231
232
233
234
235
        "Metric",
        "Value",
        "",
        "Stderr",
    ]
236

lintangsutawika's avatar
lintangsutawika committed
237
238
239
240
241
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

242
243
    values = []

lintangsutawika's avatar
lintangsutawika committed
244
    for k, dic in result_dict[column].items():
245
        version = result_dict["versions"].get(k, "N/A")
246
        n = str(result_dict["n-shot"][k])
247
248
249
250

        if "alias" in dic:
            k = dic.pop("alias")

251
252
        for (mf), v in dic.items():
            m, _, f = mf.partition(",")
253
254
255
            if m.endswith("_stderr"):
                continue

256
257
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
258
259
260
                if se != "N/A":
                    se = "%.4f" % se
                values.append([k, version, f, n, m, "%.4f" % v, "±", se])
261
            else:
262
                values.append([k, version, f, n, m, "%.4f" % v, "", ""])
263
264
265
266
267
268
269
270
271
272
273
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


274
275
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
276
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
277
278
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
279

280
281
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
282
283
284
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
285
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
286
287
                "lm-evaluation-harness!"
            )
288
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
289

290
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
291

Fabrizio Milo's avatar
Fabrizio Milo committed
292

293
294
295
296
def ignore_constructor(loader, node):
    return node


lintangsutawika's avatar
lintangsutawika committed
297
298
299
300
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
301
    *module_name, function_name = function_name.split(".")
302
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
303
304
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
305
306
307
308
309
310
311
312

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
313

314
315
316
317
318
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
        constructor_fn = import_function
lintangsutawika's avatar
lintangsutawika committed
319

320
321
    # Add the import_function constructor to the YAML loader
    yaml.add_constructor("!function", constructor_fn)
322
323
324
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
325

lintangsutawika's avatar
lintangsutawika committed
326
327
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
328
329
330
331
332
333
334

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

335
        if isinstance(include_path, str):
336
337
338
339
340
341
342
343
344
345
346
347
348
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
349
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
350
351
352
353
354
355
356
357
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
358
359


Ethan Smith's avatar
Ethan Smith committed
360
def regex_replace(string, pattern, repl, count: int = 0):
361
362
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
363

lintangsutawika's avatar
lintangsutawika committed
364

365
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
366
env.filters["regex_replace"] = regex_replace
367
368


baberabb's avatar
baberabb committed
369
def apply_template(template: str, doc: dict) -> str:
370
371
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
372
373


374
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
375
376
377
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
378
379
380
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)