utils.py 12.5 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
13
from typing import Any, Callable, List
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
16
import yaml
17
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
18

lintangsutawika's avatar
lintangsutawika committed
19

20
21
22
23
24
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
25
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
26

27
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
28

29
30
31
32
33
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
34

35
36
37
38
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
62
63
64
65
66
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
67
68
69
70
71
72
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
73
74


75
76
77
78
79
80
81
82
83
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


84
85
86
87
88
89
90
91
92
93
94
95
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Jason Phang's avatar
gpt3  
Jason Phang committed
96
97
98
99
100
101
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
102
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
103
104
    if not args_string:
        return {}
105
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
106
107
108
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
109
    return args_dict
Leo Gao's avatar
Leo Gao committed
110

Fabrizio Milo's avatar
Fabrizio Milo committed
111

Leo Gao's avatar
Leo Gao committed
112
113
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
114
        yield from iter
Leo Gao's avatar
Leo Gao committed
115
116


117
118
119
120
121
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
122

123
124
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
125

gakada's avatar
gakada committed
126
127
128
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
129
    if isinstance(patterns, str):
130
131
        patterns = [patterns]

gakada's avatar
gakada committed
132
133
134
135
136
137
138
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Lintang Sutawika's avatar
Lintang Sutawika committed
139
140
141
142
143
144
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
145
146
147
148
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
149
150
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
151
    string = re.sub(r" (['.,])", r"\1", string)
152
153
154
    return string


Jason Phang's avatar
Jason Phang committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
182
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
183
184
185
186
187
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
188

Jason Phang's avatar
Jason Phang committed
189
        yield (
lintangsutawika's avatar
lintangsutawika committed
190
191
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
192
193
194
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
195

Leo Gao's avatar
Leo Gao committed
196
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
197
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
198
    a, b = pair
199
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
200

Jason Phang's avatar
Jason Phang committed
201

202
203
204
205
206
207
208
209
210
211
212
213
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


214
class Reorderer:
baberabb's avatar
baberabb committed
215
216
217
218
219
220
221
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
222
223
224
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
225
226
227
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
228
229
230
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
231

232
    def get_reordered(self):
baberabb's avatar
baberabb committed
233
234
235
236
237
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
238
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
239

240
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
241
242
243
244
245
246
247
248
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
249
250
251
252
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
253
            for ind in inds:
254
255
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
256

257
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
258

259
260
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
261

262
def make_table(result_dict, column: str = "results", sort_results: bool = True):
263
    """Generate table of results."""
264
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
265

lintangsutawika's avatar
lintangsutawika committed
266
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
267
268
269
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
270

lintangsutawika's avatar
lintangsutawika committed
271
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
272
        column_name,
lintangsutawika's avatar
lintangsutawika committed
273
274
        "Version",
        "Filter",
275
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
276
        "Metric",
277
        "",
lintangsutawika's avatar
lintangsutawika committed
278
279
280
281
        "Value",
        "",
        "Stderr",
    ]
282

lintangsutawika's avatar
lintangsutawika committed
283
284
285
286
287
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

288
289
    values = []

290
291
292
293
294
295
    keys = result_dict[column].keys()
    if sort_results:
        # sort entries alphabetically
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
296
        version = result_dict["versions"].get(k, "N/A")
297
        n = str(result_dict["n-shot"][k])
298
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
299
300
301
302

        if "alias" in dic:
            k = dic.pop("alias")

303
304
305
306
307
        metric_items = dic.items()
        if sort_results:
            metric_items = sorted(metric_items)

        for (mf), v in metric_items:
308
            m, _, f = mf.partition(",")
309
310
311
            if m.endswith("_stderr"):
                continue

312
313
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

314
315
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
316
317
                if se != "N/A":
                    se = "%.4f" % se
318
                values.append([k, version, f, n, m, hib, "%.4f" % v, "±", se])
319
            else:
320
                values.append([k, version, f, n, m, hib, "%.4f" % v, "", ""])
321
322
323
324
325
326
327
328
329
330
331
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


332
333
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
334
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
335
336
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
337

338
339
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
340
341
342
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
343
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
344
345
                "lm-evaluation-harness!"
            )
346
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
347

348
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
349

Fabrizio Milo's avatar
Fabrizio Milo committed
350

351
352
353
354
def ignore_constructor(loader, node):
    return node


lintangsutawika's avatar
lintangsutawika committed
355
356
357
358
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
359
    *module_name, function_name = function_name.split(".")
360
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
361
362
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
363
364
365
366
367
368
369
370

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
371

372
373
374
375
376
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
        constructor_fn = import_function
lintangsutawika's avatar
lintangsutawika committed
377

378
379
    # Add the import_function constructor to the YAML loader
    yaml.add_constructor("!function", constructor_fn)
380
381
382
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
383

lintangsutawika's avatar
lintangsutawika committed
384
385
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
386
387
388
389
390
391
392

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

393
        if isinstance(include_path, str):
394
395
396
397
398
399
400
401
402
403
404
405
406
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
407
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
408
409
410
411
412
413
414
415
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
416
417


Ethan Smith's avatar
Ethan Smith committed
418
def regex_replace(string, pattern, repl, count: int = 0):
419
420
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
421

lintangsutawika's avatar
lintangsutawika committed
422

423
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
424
env.filters["regex_replace"] = regex_replace
425
426


baberabb's avatar
baberabb committed
427
def apply_template(template: str, doc: dict) -> str:
428
429
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
430
431


432
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
433
434
435
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
436
437
438
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)