huggingface.py 64.4 KB
Newer Older
1
2
from __future__ import annotations

3
import copy
Lintang Sutawika's avatar
Lintang Sutawika committed
4
import logging
5
import os
Baber Abbasi's avatar
Baber Abbasi committed
6
from collections.abc import Iterator, Sequence
Jeevan's avatar
Jeevan committed
7
from datetime import timedelta
8
from pathlib import Path
Baber Abbasi's avatar
Baber Abbasi committed
9
from typing import TYPE_CHECKING, Any, Literal
10

11
import jinja2
12
import torch
13
import torch.nn.functional as F
14
import transformers
Jeevan's avatar
Jeevan committed
15
16
17
18
19
from accelerate import (
    Accelerator,
    InitProcessGroupKwargs,
    find_executable_batch_size,
)
Nathan Habib's avatar
Nathan Habib committed
20
from accelerate.utils import get_max_memory
21
from huggingface_hub import HfApi
22
from packaging import version
Baber Abbasi's avatar
Baber Abbasi committed
23
from packaging.version import parse as vparse
24
from tqdm import tqdm
25
26
27
28
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
29
30

from lm_eval import utils
31
from lm_eval.api.model import TemplateLM
32
from lm_eval.api.registry import register_model
33
34
35
from lm_eval.models.utils import (
    Collator,
    clear_torch_cache,
36
    configure_pad_token,
37
    get_dtype,
38
    handle_stop_sequences,
39
    pad_and_concat,
40
    postprocess_generated_text,
41
42
    stop_sequences_criteria,
)
43

44

45
if TYPE_CHECKING:
Baber Abbasi's avatar
Baber Abbasi committed
46
47
48
    from transformers.quantizers.auto import AutoQuantizationConfig

    from lm_eval.api.instance import Instance
49

Lintang Sutawika's avatar
Lintang Sutawika committed
50
eval_logger = logging.getLogger(__name__)
Baber Abbasi's avatar
Baber Abbasi committed
51
TOKENIZER_INFINITY = 1000000000000000019884624838656
52

lintangsutawika's avatar
lintangsutawika committed
53

54
@register_model("hf-auto", "hf", "huggingface")
55
class HFLM(TemplateLM):
Baber Abbasi's avatar
Baber Abbasi committed
56
    """An abstracted Huggingface model class. Enables usage with both models of
57
58
59
60
61
    `transformers.AutoModelForCausalLM` and `transformers.AutoModelForSeq2SeqLM` classes.

    Supports data-parallel multi-GPU with HF Accelerate.
    """

62
    AUTO_MODEL_CLASS = None
63
    _DEFAULT_MAX_LENGTH = 2048
haileyschoelkopf's avatar
haileyschoelkopf committed
64

65
66
    def __init__(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
67
        pretrained: str | transformers.PreTrainedModel,
68
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
69
        # override whether the model should be treated as decoder-only (causal) or encoder-decoder (seq2seq)
Baber Abbasi's avatar
Baber Abbasi committed
70
        revision: str | None = "main",
71
        subfolder: str = "",
Baber Abbasi's avatar
Baber Abbasi committed
72
73
74
75
76
        tokenizer: str
        | transformers.PreTrainedTokenizer
        | transformers.PreTrainedTokenizerFast
        | None = None,
        truncation: bool | None = False,
Baber Abbasi's avatar
Baber Abbasi committed
77
        logits_cache: bool = True,
Baber Abbasi's avatar
Baber Abbasi committed
78
79
80
81
82
83
84
85
86
87
88
        max_length: int | None = None,
        device: str | None = "cuda",
        dtype: str | torch.dtype | None = "auto",
        softmax_dtype: str | torch.dtype | None = None,
        mixed_precision_dtype: str | torch.dtype | None = None,
        batch_size: int | str | None = 1,
        max_batch_size: int | None = 64,
        trust_remote_code: bool | None = False,
        use_fast_tokenizer: bool | None = True,
        add_bos_token: bool | None = False,
        prefix_token_id: int | None = None,
89
        # arguments used for splitting a model across GPUs naively.
90
        # only used if `parallelize=True`.
Baber Abbasi's avatar
Baber Abbasi committed
91
92
93
94
        parallelize: bool | None = False,
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | os.PathLike | None = "./offload",
95
        # PEFT, delta weights and quantization options
Baber Abbasi's avatar
Baber Abbasi committed
96
97
98
99
100
        peft: str | None = None,
        delta: str | None = None,
        autogptq: bool | str | None = False,
        gptqmodel: bool | None = False,
        gguf_file: str | None = None,
101
102
        # end token for thinking, either the string or int token id.
        # splits to get response after this token (if provided).
Baber Abbasi's avatar
Baber Abbasi committed
103
        think_end_token: str | int | None = None,
104
        enable_thinking: bool | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
105
        chat_template_args: dict[str, Any] | None = None,
106
        **kwargs,
Ethan Smith's avatar
Ethan Smith committed
107
    ) -> None:
108
        super().__init__()
109
110
111
112
        # optionally: take in an already-initialized transformers.PreTrainedModel
        if not isinstance(pretrained, str):
            eval_logger.warning(
                "`pretrained` model kwarg is not of type `str`. Many other model arguments may be ignored. Please do not launch via accelerate or use `parallelize=True` if passing an existing model this way."
113
            )
Baber Abbasi's avatar
Baber Abbasi committed
114
115
116
            assert not parallelize, (
                "`parallelize=True` is not compatible with passing pre-initialized model to `pretrained`"
            )
117
118
119
            self._model = pretrained
            self._device = self._model.device
            self._config = self._model.config
Baber Abbasi's avatar
Baber Abbasi committed
120
            gpus = 0
121

122
        else:
123
124
125
126
127
            assert isinstance(device, str)
            assert isinstance(pretrained, str)
            assert isinstance(batch_size, (int, str))

            gpus = torch.cuda.device_count()
Jeevan's avatar
Jeevan committed
128
129
            accelerator_kwargs = InitProcessGroupKwargs(timeout=timedelta(weeks=52))
            accelerator = Accelerator(kwargs_handlers=[accelerator_kwargs])
130
131
            if accelerator.num_processes > 1:
                self.accelerator = accelerator
132

133
134
135
            if "npu" in accelerator.device.type:
                gpus = torch.npu.device_count()

Nathan Habib's avatar
Nathan Habib committed
136
            # using one process with no model parallelism
137
138
139
140
            if not (parallelize or accelerator.num_processes > 1):
                # use user-passed device
                device_list = set(
                    ["cuda", "cpu"]
141
                    + [f"cuda:{i}" for i in range(gpus)]
142
                    + ["mps", "mps:0"]
143
                    + [f"npu:{i}" for i in range(gpus)]
144
                )
145
                if device and device in device_list:
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
                    self._device = torch.device(device)
                    eval_logger.info(f"Using device '{device}'")
                    if device in ("mps", "mps:0") and version.parse(
                        torch.__version__
                    ) < version.parse("2.1"):
                        raise RuntimeError(
                            f"mps requires torch >= 2.1. You have {torch.__version__}"
                        )
                else:
                    eval_logger.info("Device not specified")
                    eval_logger.info(f"Cuda Available? {torch.cuda.is_available()}")
                    self._device = (
                        torch.device("cuda")
                        if torch.cuda.is_available()
                        else torch.device("cpu")
                    )
Nathan Habib's avatar
Nathan Habib committed
162
            else:  # Parallelism managed by accelerate
163
164
165
166
167
                if device != "cuda":
                    eval_logger.info(
                        f"Using `accelerate launch` or `parallelize=True`, device '{device}' will be overridden when placing model."
                    )
                # TODO: include in warning that `load_in_8bit` etc. affect this too
Nathan Habib's avatar
Nathan Habib committed
168
169
170
171
172
                self._device = (
                    self.accelerator.device
                    if hasattr(self, "accelerator")
                    else torch.device(device)
                )
173

Hailey Schoelkopf's avatar
Hailey Schoelkopf committed
174
            revision = str(revision)  # cast to string if not already one
175

176
            self._get_config(
177
178
179
                pretrained,
                revision=revision,
                trust_remote_code=trust_remote_code,
180
                gguf_file=gguf_file,
181
                subfolder=subfolder,
182
183
            )

184
            # determine which of 'causal' and 'seq2seq' backends to use for HF models
185
186
187
        self._get_backend(
            config=self.config, backend=backend, trust_remote_code=trust_remote_code
        )
188

189
190
191
192
193
        # load tokenizer so we know tokenizer vocabulary size before loading model and PEFT
        self._create_tokenizer(
            pretrained,
            tokenizer,
            revision=revision,
194
            subfolder=subfolder,
195
196
            trust_remote_code=trust_remote_code,
            use_fast_tokenizer=use_fast_tokenizer,
197
            gguf_file=gguf_file,
198
            add_bos_token=add_bos_token,
199
200
        )

201
202
203
204
205
206
207
        if (
            quantization_config := getattr(self.config, "quantization_config", None)
        ) is not None and isinstance(quantization_config, dict):
            from transformers.quantizers import AutoQuantizationConfig

            quantization_config = AutoQuantizationConfig.from_dict(quantization_config)

208
209
210
211
212
213
214
215
        # if we passed `pretrained` as a string, initialize our model now
        if isinstance(pretrained, str):
            self._create_model(
                pretrained=pretrained,
                revision=revision,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                parallelize=parallelize,
216
                gpus=gpus,
217
218
219
220
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                peft=peft,
221
                delta=delta,
222
                autogptq=autogptq,
223
                gptqmodel=gptqmodel,
224
                gguf_file=gguf_file,
225
                quantization_config=quantization_config,
226
                subfolder=subfolder,
227
                **kwargs,
228
229
            )

230
        # access self._model through self.model property outside this method
231
232
233
        if isinstance(self.model, torch.nn.Module):
            self.model.eval()
            self.model.tie_weights()
haileyschoelkopf's avatar
haileyschoelkopf committed
234

235
236
237
238
239
        self.think_end_token = (
            int(think_end_token)
            if (isinstance(think_end_token, str) and think_end_token.isdigit())
            else think_end_token
        )
lintangsutawika's avatar
lintangsutawika committed
240
        self.truncation = truncation
Baber Abbasi's avatar
Baber Abbasi committed
241
        self.logits_cache = logits_cache
242
        self.vocab_size = self.tokenizer.vocab_size
243
        # select (or create) a pad token to use
244
        self.tokenizer = configure_pad_token(self.tokenizer, model_config=self.config)
245
246
247
248
249
        self.chat_template_args = (
            chat_template_args or {} | dict(enable_thinking=enable_thinking)
            if enable_thinking is not None
            else {}
        )
250

251
        self.add_bos_token = add_bos_token
252
        if "gemma" in getattr(self.config, "model_type", ""):
253
            self.add_bos_token = True
254
            eval_logger.info(
255
                f"Model type is '{self.config.model_type}', part of the Gemma family--a BOS token will be used as Gemma underperforms without it."
256
257
            )

258
        self._max_length = max_length
259
260
261
262
        self.pretrained = pretrained
        self.delta = delta
        self.peft = peft
        self.revision = revision
Benjamin Fattori's avatar
Benjamin Fattori committed
263
264
265
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = max_batch_size
266
267
268
        self.softmax_dtype = (
            get_dtype(softmax_dtype) if softmax_dtype is not None else None
        )
269
270
271
272
273
        self.mixed_precision_dtype = (
            get_dtype(mixed_precision_dtype)
            if mixed_precision_dtype is not None
            else None
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
274
275
276
277
278
279
280

        if str(batch_size).startswith("auto"):
            batch_size = batch_size.split(":")
            self.batch_size_per_gpu = batch_size[0]
            self.batch_schedule = float(batch_size[1]) if len(batch_size) > 1 else 1
        else:
            self.batch_size_per_gpu = int(batch_size)
281

282
        if isinstance(pretrained, str):
Baber Abbasi's avatar
Baber Abbasi committed
283
284
285
            if (gpus >= 1 or str(self.device) == "mps") and not (
                parallelize or autogptq or hasattr(self, "accelerator")
            ):
Nathan Habib's avatar
Nathan Habib committed
286
                # TODO: can remove this whole snippet except in the mps case, perhaps?
Baber Abbasi's avatar
Baber Abbasi committed
287
288
289
290
291
292
293
294
295
                # place model onto device requested manually,
                # if not using HF Accelerate or device_map
                # or any other option that preloads model onto device
                try:
                    self.model.to(self.device)
                except ValueError:
                    eval_logger.debug(
                        "Failed to place model onto specified device. This may be because the model is quantized via `bitsandbytes` or `device_map` is provided. If the desired GPU is being used, this message is safe to ignore."
                    )
296
297
            # multigpu data-parallel support when launched with accelerate
            if gpus > 1:
Nathan Habib's avatar
Nathan Habib committed
298
299
300
301
                if accelerator.num_processes > 1:
                    if parallelize:
                        eval_logger.warning(
                            "You are both using a HF Accelerate `device_map` (`--model_args parallelize=True`) and launching via `accelerate launch`. This will attempt to do model and data parallelism depending on the resources available."
302
                        )
Nathan Habib's avatar
Nathan Habib committed
303
                    elif gpus > accelerator.num_processes:
304
305
306
307
308
309
                        eval_logger.warning(
                            "WARNING: The number of total system GPUs does not match the number of spawned processes. "
                            "If you would like to use data parallelism, please launch the script "
                            "with 'accelerate launch *script*'. "
                            f"Current run will proceed with {accelerator.num_processes} devices."
                        )
Nathan Habib's avatar
Nathan Habib committed
310
311
312
313
314
                        if self.accelerator.is_local_main_process:
                            eval_logger.info(
                                f"Using {gpus} devices with data parallelism"
                            )

315
                    self._device = torch.device(f"{accelerator.device}")
316
                    self.accelerator = accelerator
317

318
319
                    self._rank = self.accelerator.local_process_index
                    self._world_size = self.accelerator.num_processes
Nathan Habib's avatar
Nathan Habib committed
320
321
322
323
                else:
                    # if we aren't launching via accelerate, ditch
                    self._rank = 0
                    self._world_size = 1
324
325
326
327
328
329
330
        else:
            # if a PreTrainedModel was passed into HFLM, we forgo distributed setup.
            eval_logger.warning(
                "Passed an already-initialized model through `pretrained`, assuming single-process call to evaluate() or custom distributed integration"
            )
            self._rank = 0
            self._world_size = 1
haileyschoelkopf's avatar
haileyschoelkopf committed
331

332
        self.custom_prefix_token_id = prefix_token_id
333
334
335
336
        if prefix_token_id is not None:
            eval_logger.info(
                f"Loglikelihood prefix token id used in evaluation: {self.prefix_token_id}"
            )
337

Nathan Habib's avatar
Nathan Habib committed
338
339
    def _get_accelerate_args(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
340
341
342
343
344
345
        parallelize: bool | None = None,
        device_map: str | None = "auto",
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | None = "./offload",
        gpus: int | None = None,
Nathan Habib's avatar
Nathan Habib committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    ) -> dict:
        """Returns the kwargs needed to apply `accelerate` in `AutoModel.from_pretrained`."""
        num_local_processes = int(os.environ.get("LOCAL_WORLD_SIZE", 1))
        num_machines = int(os.environ.get("WORLD_SIZE", 0)) // num_local_processes
        if (
            num_machines == 0
            and hasattr(self, "accelerator")
            and self.accelerator is not None
        ):
            eval_logger.info(
                "We are not in a distributed setting for accelerate. Setting model_parallel to False."
            )
            parallelize = False

        if parallelize is None:
            # If parallelism is unset by the user, we automatically assign model parallelism
            # if enough extra GPUs are available
            max_memory_all_gpus = get_max_memory()
            # We just want gpu, not cpu, max memory
            if "cpu" in max_memory_all_gpus:
                del max_memory_all_gpus["cpu"]
            parallelize = bool(num_local_processes < len(max_memory_all_gpus))
            eval_logger.info(
                f"Setting model parallel to {parallelize} since "
                f"the number of local processes is {num_local_processes} "
                f"and the number of GPUs is {len(max_memory_all_gpus)}"
            )

        args = {}
        if parallelize:  # Model parallelism will be used
            max_memory = {}
            if max_memory_per_gpu is not None:  # Using the provided memory requirements
                max_memory_per_gpu_map = {
                    device_idx: max_memory_per_gpu for device_idx in range(gpus)
                }
            else:  # Estimating the possible memory requirements
                max_memory_all_gpus = get_max_memory()
Baber Abbasi's avatar
Baber Abbasi committed
383
384
                max_memory_all_gpus.pop("cpu", None)
                if hasattr(self, "accelerator"):
Nathan Habib's avatar
Nathan Habib committed
385
386
387
388
389
390
391
                    # use only 1 / num_processes of the GPUs if we are running under accelerate launch
                    max_memory_per_gpu_map = {
                        k: v
                        for k, v in max_memory_all_gpus.items()
                        if k % num_local_processes
                        == (self.accelerator.process_index % num_local_processes)
                    }
Baber Abbasi's avatar
Baber Abbasi committed
392
393
394
                else:
                    max_memory_per_gpu_map = max_memory_all_gpus

Nathan Habib's avatar
Nathan Habib committed
395
            args["max_memory"] = max_memory_per_gpu_map
396
            args["device_map"] = "auto" if device_map is None else device_map
Nathan Habib's avatar
Nathan Habib committed
397
            eval_logger.info(
398
                f"Model parallel was set to True, setting max memory per GPU to {max_memory_per_gpu_map} and device map to {args.get('device_map')}"
Nathan Habib's avatar
Nathan Habib committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
            )

            if max_cpu_memory is not None:
                max_memory["cpu"] = max_cpu_memory

            args["offload_folder"] = offload_folder
        elif (
            device_map is None
        ):  # No model parallelism, we use the default provided device for our model
            if hasattr(self, "accelerator"):
                device_map = {"": f"{self.accelerator.device}"}
            else:
                device_map = {"": str(self.device)}
            args["max_memory"] = None
            args["device_map"] = device_map
            eval_logger.info(
                f"Model parallel was set to False, max memory was not set, and device map was set to {device_map}"
            )
        else:
            args["max_memory"] = None
            args["device_map"] = None
            eval_logger.info("Model parallel was set to False.")

        return args

424
425
426
427
428
    @property
    def config(self):
        # return the associated transformers.AutoConfig for the given pretrained model.
        return self._config

429
430
431
432
433
434
435
436
    @property
    def model(self):
        # returns the model, unwrapping it if using Accelerate
        if hasattr(self, "accelerator"):
            return self.accelerator.unwrap_model(self._model)
        else:
            return self._model

437
    @property
Baber Abbasi's avatar
Baber Abbasi committed
438
    def eot_token_id(self) -> int:
439
440
441
        # we use EOT because end of *text* is more accurate for what we're doing than end of *sentence*
        return self.tokenizer.eos_token_id

442
    @property
Baber Abbasi's avatar
Baber Abbasi committed
443
    def prefix_token_id(self) -> int:
444
445
446
447
448
449
450
        # it is used as prefix for loglikelihood
        if self.custom_prefix_token_id is not None:
            return self.custom_prefix_token_id
        if self.tokenizer.bos_token_id is not None:
            return self.tokenizer.bos_token_id
        return self.tokenizer.eos_token_id

451
    @property
Baber Abbasi's avatar
Baber Abbasi committed
452
    def max_length(self) -> int:
453
454
455
456
457
458
459
        if self._max_length:  # if max length manually set, return it
            return self._max_length
        seqlen_config_attrs = ("n_positions", "max_position_embeddings", "n_ctx")
        for attr in seqlen_config_attrs:
            if hasattr(self.model.config, attr):
                return getattr(self.model.config, attr)
        if hasattr(self.tokenizer, "model_max_length"):
Baber Abbasi's avatar
Baber Abbasi committed
460
            if self.tokenizer.model_max_length == TOKENIZER_INFINITY:
461
462
463
                return self._DEFAULT_MAX_LENGTH
            return self.tokenizer.model_max_length
        return self._DEFAULT_MAX_LENGTH
464

465
    @property
Ethan Smith's avatar
Ethan Smith committed
466
    def max_gen_toks(self) -> int:
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        return 256

    @property
    def batch_size(self):
        return self.batch_size_per_gpu

    @property
    def device(self):
        return self._device

    @property
    def rank(self):
        return self._rank

    @property
    def world_size(self):
        return self._world_size

KonradSzafer's avatar
KonradSzafer committed
485
486
487
488
    @property
    def tokenizer_name(self) -> str:
        return self.tokenizer.name_or_path.replace("/", "__")

489
490
    def _get_backend(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
491
        config: transformers.PretrainedConfig | transformers.AutoConfig,
492
        backend: Literal["default", "causal", "seq2seq"] = "default",
Baber Abbasi's avatar
Baber Abbasi committed
493
        trust_remote_code: bool | None = False,
494
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
495
496
        """Helper method during initialization.

497
        Determines the backend ("causal" (decoder-only) or "seq2seq" (encoder-decoder)) model type to be used.
498
        sets `self.AUTO_MODEL_CLASS` appropriately if not already set.
499
500
501

        **If not calling HFLM.__init__() or HFLM._get_backend() within a subclass of HFLM,
        user must set `self.backend` to be either "causal" or "seq2seq" manually!**
502
        """
503

504
505
506
507
        assert backend in ["default", "causal", "seq2seq"]

        if backend != "default":
            # if we've settled on non-default backend, use that manually
Baber Abbasi's avatar
Baber Abbasi committed
508
            if backend in ["causal", "seq2seq"]:
509
                self.backend = backend
510
            eval_logger.info(
511
                f"Overrode HF model backend type, and using type '{self.backend}'"
512
513
514
515
            )
        else:
            # determine and use the default HF backend for this model, based on its config + metadata.
            if (
Baber Abbasi's avatar
Baber Abbasi committed
516
                getattr(config, "model_type", None)
517
518
519
520
521
                in MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES
            ):
                # first check if model type is listed under seq2seq models, since some
                # models like MBart are listed in both seq2seq and causal mistakenly in HF transformers.
                # these special cases should be treated as seq2seq models.
522
                self.backend = "seq2seq"
523
                eval_logger.debug(f"Using model type '{self.backend}'")
524
            elif (
Baber Abbasi's avatar
Baber Abbasi committed
525
                getattr(config, "model_type", None) in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
526
            ):
527
                self.backend = "causal"
528
                eval_logger.debug(f"Using model type '{self.backend}'")
529
530
531
532
533
            else:
                if not trust_remote_code:
                    eval_logger.warning(
                        "HF model type is neither marked as CausalLM or Seq2SeqLM. \
                    This is expected if your model requires `trust_remote_code=True` but may be an error otherwise."
534
                        "Setting backend to causal"
535
536
                    )
                # if model type is neither in HF transformers causal or seq2seq model registries
537
538
539
                # then we default to assuming AutoModelForCausalLM
                self.backend = "causal"
                eval_logger.info(
540
                    f"Model type cannot be determined. Using default model type '{self.backend}'"
541
                )
542

543
544
545
546
547
        if self.AUTO_MODEL_CLASS is None:
            if self.backend == "causal":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
            elif self.backend == "seq2seq":
                self.AUTO_MODEL_CLASS = transformers.AutoModelForSeq2SeqLM
548
549
550
551
552
553

    def _get_config(
        self,
        pretrained: str,
        revision: str = "main",
        trust_remote_code: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
554
        gguf_file: str | None = None,
555
        subfolder: str = "",
556
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
557
        """Return the model config for HuggingFace models."""
558
559
560
561
        self._config = transformers.AutoConfig.from_pretrained(
            pretrained,
            revision=revision,
            trust_remote_code=trust_remote_code,
562
            gguf_file=gguf_file,
563
            subfolder=subfolder,
564
565
566
567
568
        )

    def _create_model(
        self,
        pretrained: str,
Baber Abbasi's avatar
Baber Abbasi committed
569
570
571
        revision: str | None = "main",
        dtype: str | torch.dtype | None = "auto",
        trust_remote_code: bool | None = False,
572
573
574
        # arguments used for splitting a model across GPUs naively.
        # only used if `parallelize=True`.
        # (accelerate naive PP (device_map) options)
Baber Abbasi's avatar
Baber Abbasi committed
575
576
577
578
579
        parallelize: bool | None = False,
        gpus: int | None = None,
        max_memory_per_gpu: int | str | None = None,
        max_cpu_memory: int | str | None = None,
        offload_folder: str | None = "./offload",
580
        # PEFT, delta weights and quantization options
Baber Abbasi's avatar
Baber Abbasi committed
581
582
583
584
585
586
        peft: str | None = None,
        delta: str | None = None,
        autogptq: bool | str | None = False,
        gptqmodel: bool | None = False,
        gguf_file: str | None = None,
        quantization_config: AutoQuantizationConfig | None = None,
587
        subfolder: str = "",
588
589
        **kwargs,
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
590
        """Initializes an HF or HF-compatible PreTrainedModel from scratch
591
592
593
594
595
596
597
598
599
600
        inside HFLM, using the kwargs passed into self.__init__().

        Also handles functionality such as AutoGPTQ usage and PEFT wrapping.

        For future similar extensions to AutoGPTQ that are not core to HF's ecosystem,
        (such as PyTorch models that are nearly, but not quite, fully mirroring
        HF's public interface relied on in this HFLM class)
        please consider subclassing HFLM and overriding this and other methods as needed.
        """

Baber Abbasi's avatar
Baber Abbasi committed
601
        model_kwargs = kwargs or {}
602

Nathan Habib's avatar
Nathan Habib committed
603
604
605
        model_kwargs.update(
            self._get_accelerate_args(
                parallelize=parallelize,
Baber Abbasi's avatar
Baber Abbasi committed
606
                device_map=kwargs.get("device_map"),
Nathan Habib's avatar
Nathan Habib committed
607
608
609
610
                max_memory_per_gpu=max_memory_per_gpu,
                max_cpu_memory=max_cpu_memory,
                offload_folder=offload_folder,
                gpus=gpus,
611
            )
Nathan Habib's avatar
Nathan Habib committed
612
        )
613

614
        if not autogptq and not gptqmodel:
Baber Abbasi's avatar
Baber Abbasi committed
615
616
            if model_kwargs.get("load_in_4bit"):
                assert vparse(transformers.__version__) >= vparse("4.30.0"), (
Baber Abbasi's avatar
Baber Abbasi committed
617
618
                    "load_in_4bit requires transformers >= 4.30.0"
                )
Baber Abbasi's avatar
Baber Abbasi committed
619
620
                if compute_dtype := model_kwargs.get("bnb_4bit_compute_dtype"):
                    model_kwargs["bnb_4bit_compute_dtype"] = get_dtype(compute_dtype)
Nathan Habib's avatar
Nathan Habib committed
621

622
623
624
            self._model = self.AUTO_MODEL_CLASS.from_pretrained(
                pretrained,
                revision=revision,
625
                torch_dtype=get_dtype(dtype),
626
                trust_remote_code=trust_remote_code,
627
                gguf_file=gguf_file,
628
                quantization_config=quantization_config,
629
                subfolder=subfolder,
630
631
632
                **model_kwargs,
            )
        else:
633
634
635
            if autogptq and gptqmodel:
                raise ValueError(
                    "Cannot use both 'autogptq' and 'gptqmodel' options at the same time."
636
637
                )

638
639
640
641
642
643
644
            if autogptq:
                try:
                    from auto_gptq import AutoGPTQForCausalLM
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load auto_gptq, but auto-gptq is not installed ",
                        "please install auto-gptq via pip install lm-eval[gptq] or pip install -e .[gptq]",
Baber Abbasi's avatar
Baber Abbasi committed
645
                    ) from exception
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

                self._model = AutoGPTQForCausalLM.from_quantized(
                    pretrained,
                    trust_remote_code=trust_remote_code,
                    model_basename=None if autogptq is True else Path(autogptq).stem,
                    use_safetensors=True
                    if autogptq is True
                    else autogptq.endswith(".safetensors"),
                    **model_kwargs,
                )

            if gptqmodel:
                try:
                    from gptqmodel import GPTQModel
                except ModuleNotFoundError as exception:
                    raise type(exception)(
                        "Tried to load gptqmodel, but gptqmodel is not installed ",
                        "please install gptqmodel via `pip install gptqmodel --no-build-isolation` or `pip install lm-eval[gptqmodel] --no-build-isolation`",
Baber Abbasi's avatar
Baber Abbasi committed
664
                    ) from exception
665
666
667
668

                self._model = GPTQModel.from_quantized(
                    pretrained, trust_remote_code=trust_remote_code, **model_kwargs
                )
669

670
671
672
673
674
        if peft and delta:
            raise ValueError(
                "Cannot use both 'peft' and 'delta' options at the same time."
            )

675
        if peft:
676
677
678
            from peft import PeftModel
            from peft import __version__ as PEFT_VERSION

Baber Abbasi's avatar
Baber Abbasi committed
679
680
681
682
            if model_kwargs.get("load_in_4bit") and vparse(PEFT_VERSION) < vparse(
                "0.4.0"
            ):
                raise AssertionError("load_in_4bit requires peft >= 0.4.0")
683
684
685
686
687
688
689
690

            # Compatible with Gemma3 (multimodal) and old models
            if hasattr(self._model.config, "text_config") and hasattr(self._model.config.text_config, "vocab_size"):
                vocab_size = self._model.config.text_config.vocab_size
            else:
                vocab_size = self._model.config.vocab_size
            
            if vocab_size != len(self.tokenizer):
691
                # resize model for LoRAs with added tokens
692
                eval_logger.info(
693
                    f"Model config indicates vocab_size='{vocab_size}', but found tokenizer with vocab size '{len(self.tokenizer)}'. Resizing model embedding layer..."
694
                )
695
                self._model.resize_token_embeddings(len(self.tokenizer))
696
697
698
            self._model = PeftModel.from_pretrained(
                self._model, peft, revision=revision
            )
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        elif delta:
            if autogptq:
                eval_logger.warning(
                    "Delta weights might trigger unexpected behavior when used with AutoGPTQ."
                )
            _model_delta = self.AUTO_MODEL_CLASS.from_pretrained(
                delta,
                revision=revision,
                torch_dtype=get_dtype(dtype),
                trust_remote_code=trust_remote_code,
                **model_kwargs,
            )
            for name, param in self._model.state_dict().items():
                try:
                    param.data += _model_delta.state_dict()[name]
Baber Abbasi's avatar
Baber Abbasi committed
714
715
716
717
                except KeyError as e:
                    raise KeyError(
                        f"Delta model is missing weights for layer: {name}"
                    ) from e
718
719
720
                except Exception as e:
                    raise RuntimeError(
                        f"Failed to add delta weights to layer {name}. Error: {e}"
Baber Abbasi's avatar
Baber Abbasi committed
721
                    ) from e
722
723

            del _model_delta
724
725
726

    def _create_tokenizer(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
727
728
729
730
731
732
733
734
735
736
737
        pretrained: str | transformers.PreTrainedModel,
        tokenizer: str
        | transformers.PreTrainedTokenizer
        | transformers.PreTrainedTokenizerFast
        | None,
        revision: str | None = "main",
        trust_remote_code: bool | None = False,
        use_fast_tokenizer: bool | None = True,
        gguf_file: str | None = None,
        add_bos_token: bool | None = False,
        subfolder: str | None = "",
738
    ) -> None:
Baber Abbasi's avatar
Baber Abbasi committed
739
        """Helper method during initialization.
740
741
742
743

        Create a tokenizer object corresponding to the correct
        tokenizer for value of `pretrained`, or use the pre-initialized tokenizer passed.
        """
744
745
746
747
748
749
        kwargs = {
            "revision": revision,
            "trust_remote_code": trust_remote_code,
        }

        # gguf format embeds tokenizer and is not compatible with hf tokenizer `use_fast` param
750
        if not tokenizer and gguf_file is not None:
751
752
753
            kwargs["gguf_file"] = gguf_file
        else:
            kwargs["use_fast"] = use_fast_tokenizer
754

755
756
757
        if add_bos_token:
            kwargs["add_bos_token"] = True

758
759
760
        if subfolder:
            kwargs["subfolder"] = subfolder

761
762
763
        if tokenizer:
            if isinstance(tokenizer, str):
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
764
                    tokenizer, **kwargs
765
766
767
                )
            else:
                assert isinstance(
Baber Abbasi's avatar
Baber Abbasi committed
768
769
770
771
772
773
                    tokenizer,
                    (
                        transformers.PreTrainedTokenizer,
                        transformers.PreTrainedTokenizerFast,
                    ),
                )
774
775
776
777
778
779
780
781
782
                self.tokenizer = tokenizer
        else:
            # Get tokenizer based on 'pretrained'
            if isinstance(pretrained, str):
                model_name = pretrained
            else:
                # get the HF hub name via accessor on model
                model_name = self.model.name_or_path
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
783
                model_name, **kwargs
784
785
            )

Baber Abbasi's avatar
Baber Abbasi committed
786
    def _detect_batch_size(self, requests: Sequence | None = None, pos: int = 0):
Benjamin Fattori's avatar
Benjamin Fattori committed
787
788
789
790
791
        if requests:
            _, context_enc, continuation_enc = requests[pos]
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
792
793
            max_context_enc = len(context_enc[-(self.max_length + 1) :])
            max_cont_enc = len(continuation_enc[-(self.max_length + 1) :])
Benjamin Fattori's avatar
Benjamin Fattori committed
794
795
        else:
            max_length = self.max_length
796
797
            max_context_enc = max_length
            max_cont_enc = max_length
lintangsutawika's avatar
lintangsutawika committed
798

Benjamin Fattori's avatar
Benjamin Fattori committed
799
800
        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
Baber Abbasi's avatar
Baber Abbasi committed
801
        def forward_batch(batch_size: int):
802
            if self.backend == "seq2seq":
803
                length = max(max_context_enc, max_cont_enc)
lintangsutawika's avatar
lintangsutawika committed
804
805
806
                batched_conts = torch.ones(
                    (batch_size, length), device=self.device
                ).long()
807
808
                test_batch = torch.ones((batch_size, length), device=self.device).long()
                call_kwargs = {
lintangsutawika's avatar
lintangsutawika committed
809
810
811
                    "attn_mask": test_batch,
                    "labels": batched_conts,
                }
812
813
            else:
                call_kwargs = {}
lintangsutawika's avatar
lintangsutawika committed
814
815
816
                test_batch = torch.ones(
                    (batch_size, max_length), device=self.device
                ).long()
Benjamin Fattori's avatar
Benjamin Fattori committed
817
            for _ in range(5):
818
819
820
821
822
                out = F.log_softmax(  # noqa: F841
                    self._model_call(test_batch, **call_kwargs),
                    dim=-1,
                    dtype=self.softmax_dtype,
                )
lintangsutawika's avatar
lintangsutawika committed
823

Benjamin Fattori's avatar
Benjamin Fattori committed
824
825
            return batch_size

826
827
828
829
830
831
832
        try:
            batch_size = forward_batch()
        except RuntimeError as e:
            if "No executable batch size found" in str(e):
                batch_size = 1
            else:
                raise
Benjamin Fattori's avatar
Benjamin Fattori committed
833

834
835
836
837
838
839
840
        if self.world_size > 1:
            # if multi-GPU, always take minimum over all selected batch sizes
            max_rnk_bs = torch.tensor([batch_size], device=self.device)
            gathered = (
                self.accelerator.gather(max_rnk_bs).cpu().detach().numpy().tolist()
            )
            batch_size = min(gathered)
841
            clear_torch_cache()
842
843
            return batch_size

844
        clear_torch_cache()
Benjamin Fattori's avatar
Benjamin Fattori committed
845
846
        return batch_size

baberabb's avatar
baberabb committed
847
    def tok_encode(
Baber Abbasi's avatar
Baber Abbasi committed
848
849
850
851
852
        self,
        string: str,
        left_truncate_len: int | None = None,
        add_special_tokens: bool | None = None,
    ) -> list[int]:
haileyschoelkopf's avatar
haileyschoelkopf committed
853
        """ """
Lintang Sutawika's avatar
Lintang Sutawika committed
854
855
856
857
858
        # default for None - empty dict, use predefined tokenizer param
        # used for all models except for CausalLM or predefined value
        special_tokens_kwargs = {}

        # by default for CausalLM - false or self.add_bos_token is set
859
        if add_special_tokens is None:
860
            if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
861
862
863
864
865
866
                special_tokens_kwargs = {
                    "add_special_tokens": False or self.add_bos_token
                }
        # otherwise the method explicitly defines the value
        else:
            special_tokens_kwargs = {"add_special_tokens": add_special_tokens}
867

Lintang Sutawika's avatar
Lintang Sutawika committed
868
        encoding = self.tokenizer.encode(string, **special_tokens_kwargs)
haileyschoelkopf's avatar
haileyschoelkopf committed
869

870
871
872
        # left-truncate the encoded context to be at most `left_truncate_len` tokens long
        if left_truncate_len:
            encoding = encoding[-left_truncate_len:]
haileyschoelkopf's avatar
haileyschoelkopf committed
873

874
875
        return encoding

haileyschoelkopf's avatar
haileyschoelkopf committed
876
    def tok_batch_encode(
lintangsutawika's avatar
lintangsutawika committed
877
        self,
Baber Abbasi's avatar
Baber Abbasi committed
878
        strings: list[str],
lintangsutawika's avatar
lintangsutawika committed
879
        padding_side: str = "left",
Baber Abbasi's avatar
Baber Abbasi committed
880
        left_truncate_len: int | None = None,
881
        truncation: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
882
    ) -> tuple[torch.Tensor, torch.Tensor]:
haileyschoelkopf's avatar
haileyschoelkopf committed
883
884
885
886
        # encode a batch of strings. converts to tensors and pads automatically, unlike tok_encode.
        old_padding_side = self.tokenizer.padding_side
        self.tokenizer.padding_side = padding_side

Lintang Sutawika's avatar
Lintang Sutawika committed
887
        add_special_tokens = {}
888
        if self.backend == "causal":
Lintang Sutawika's avatar
Lintang Sutawika committed
889
            add_special_tokens = {"add_special_tokens": False or self.add_bos_token}
haileyschoelkopf's avatar
haileyschoelkopf committed
890
891
892

        encoding = self.tokenizer(
            strings,
lintangsutawika's avatar
lintangsutawika committed
893
            truncation=truncation,
haileyschoelkopf's avatar
haileyschoelkopf committed
894
895
            padding="longest",
            return_tensors="pt",
Lintang Sutawika's avatar
Lintang Sutawika committed
896
            **add_special_tokens,
haileyschoelkopf's avatar
haileyschoelkopf committed
897
898
        )
        if left_truncate_len:
899
900
            original_lengths = encoding["input_ids"].size(1)
            if original_lengths > left_truncate_len:
Baber Abbasi's avatar
Baber Abbasi committed
901
                eval_logger.warning(
902
903
904
                    f"Left truncation applied. Original sequence length was {original_lengths}, "
                    f"truncating to last {left_truncate_len} tokens. Some content will be lost.",
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
905
906
907
908
909
910
911
912
            encoding["input_ids"] = encoding["input_ids"][:, -left_truncate_len:]
            encoding["attention_mask"] = encoding["attention_mask"][
                :, -left_truncate_len:
            ]
        self.tokenizer.padding_side = old_padding_side

        return encoding["input_ids"], encoding["attention_mask"]

Baber Abbasi's avatar
Baber Abbasi committed
913
    def tok_decode(self, tokens: Iterator[list[str]], skip_special_tokens: bool = True):
Lintang Sutawika's avatar
Lintang Sutawika committed
914
        return self.tokenizer.decode(tokens, skip_special_tokens=skip_special_tokens)
915

Baber Abbasi's avatar
Baber Abbasi committed
916
917
918
919
920
921
    def _model_call(
        self,
        inps: torch.Tensor,
        attn_mask: torch.Tensor | None = None,
        labels: torch.Tensor | None = None,
    ) -> torch.Tensor:
922
        """
Baber Abbasi's avatar
Baber Abbasi committed
923

haileyschoelkopf's avatar
haileyschoelkopf committed
924
        :param inps: torch.Tensor
925
926
927
928
929
930
931
932
933
934
935
936
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)] or of shape
            [batch, sequence_ctx]. the size of sequence may vary from call to call
        :param attn_mask: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :param labels: torch.Tensor, optional
            A torch tensor of shape [batch, (sequence_ctx + sequence_cont)]. Only passed
            (and must be passed) if self.AUTO_MODEL_CLASS is transformers.AutoModelForSeq2SeqLM
        :return
            A torch tensor of shape [batch, sequence, vocab] with the
        logits returned from the model's decoder
        """
Baber Abbasi's avatar
Baber Abbasi committed
937
938
939
        with (
            torch.no_grad(),
            torch.autocast(
940
941
942
                device_type=self.device.type,
                dtype=self.mixed_precision_dtype,
                enabled=self.mixed_precision_dtype is not None,
Baber Abbasi's avatar
Baber Abbasi committed
943
944
945
946
947
948
949
950
951
952
953
954
955
956
            ),
        ):
            if attn_mask is not None or labels is not None:
                assert attn_mask is not None and labels is not None
                assert transformers.AutoModelForSeq2SeqLM == self.AUTO_MODEL_CLASS
                return self.model(
                    input_ids=inps, attention_mask=attn_mask, labels=labels
                ).logits

            assert self.AUTO_MODEL_CLASS in (
                transformers.AutoModelForCausalLM,
                transformers.AutoModelForVision2Seq,
            )
            return self.model(inps).logits
957

Baber Abbasi's avatar
Baber Abbasi committed
958
959
960
961
962
963
964
    def _model_generate(
        self,
        context,
        max_length: int,
        stop: list[str],
        **generation_kwargs: dict[str, Any],
    ) -> torch.Tensor:
Baber Abbasi's avatar
Baber Abbasi committed
965
        # temperature = 0.0 if not set
966
967
968
        # if do_sample is false and temp==0.0:
        # remove temperature, as do_sample=False takes care of this
        # and we don't want a warning from HF
Baber Abbasi's avatar
Baber Abbasi committed
969
        generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
Baber Abbasi's avatar
Baber Abbasi committed
970
        do_sample = generation_kwargs.get("do_sample")
971
972
973
974
975

        # The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
        if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
            generation_kwargs["do_sample"] = do_sample = False

Baber Abbasi's avatar
Baber Abbasi committed
976
977
        if do_sample is False and generation_kwargs.get("temperature") == 0.0:
            generation_kwargs.pop("temperature")
978
979
        # build stopping criteria
        stopping_criteria = stop_sequences_criteria(
980
            self.tokenizer, stop, context.shape[1], context.shape[0]
981
        )
982
983
984
985
986
987
988
989
990
991
992
993
994
        with torch.autocast(
            device_type=self.device.type,
            dtype=self.mixed_precision_dtype,
            enabled=self.mixed_precision_dtype is not None,
        ):
            return self.model.generate(
                input_ids=context,
                max_length=max_length,
                stopping_criteria=stopping_criteria,
                pad_token_id=self.tokenizer.pad_token_id,
                use_cache=True,
                **generation_kwargs,
            )
995

Baber Abbasi's avatar
Baber Abbasi committed
996
    def _select_cont_toks(
Baber Abbasi's avatar
Baber Abbasi committed
997
998
999
1000
        self,
        logits: torch.Tensor,
        contlen: int | None = None,
        inplen: int | None = None,
Baber Abbasi's avatar
Baber Abbasi committed
1001
    ) -> torch.Tensor:
1002
        if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1003
1004
1005
            assert contlen and inplen, (
                "Must pass input len and cont. len to select scored logits for causal LM"
            )
1006
1007
1008
            # discard right-padding.
            # also discard the input/context tokens. we'll only score continuations.
            logits = logits[inplen - contlen : inplen]
1009
        elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1010
1011
1012
            assert contlen and not inplen, (
                "Selecting scored logits for Seq2SeqLM requires only cont. len"
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1013
            # only discard right-padding.
1014
            # the logits input to this fn only contain decoder-side tokens.
haileyschoelkopf's avatar
haileyschoelkopf committed
1015
1016
            logits = logits[:contlen]

1017
1018
        return logits

1019
    def loglikelihood_rolling(
Baber Abbasi's avatar
Baber Abbasi committed
1020
1021
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[float]:
Benjamin Fattori's avatar
Benjamin Fattori committed
1022
1023
1024
1025
1026
1027
1028
1029
        adaptive_batch_size = None
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size

1030
1031
1032
1033
1034
1035
1036
1037
1038
        # First, collect all windows from all requests
        all_windows = []  # List of (request_idx, window) tuples
        request_window_counts = []  # Track number of windows per request

        for req_idx, (string,) in enumerate(
            tqdm(
                [req.args for req in requests],
                disable=(disable_tqdm or (self.rank != 0)),
            )
1039
        ):
Baber Abbasi's avatar
Baber Abbasi committed
1040
            rolling_token_windows: list[tuple[list[int], list[int]]] = list(
1041
1042
1043
1044
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
1045
                        prefix_token=self.prefix_token_id,
1046
1047
1048
1049
1050
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
haileyschoelkopf's avatar
haileyschoelkopf committed
1051
1052

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
1053
            windows = [(None,) + x for x in rolling_token_windows]
1054

1055
1056
1057
            # Store windows with their request index
            all_windows.extend((req_idx, window) for window in windows)
            request_window_counts.append(len(windows))
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
        # Handle distributed case padding
        pad_amnt = 0
        if self.world_size > 1:
            mytensor = torch.tensor(len(all_windows), device=self.device)
            gathered = self.accelerator.gather(mytensor).cpu().detach().numpy().tolist()
            pad_amnt = max(gathered) - gathered[self.rank]
            if pad_amnt > 0:
                all_windows += pad_amnt * [all_windows[0]]

        all_nlls = []
        batch_size = adaptive_batch_size or self.batch_size
        for i in range(0, len(all_windows), batch_size):
            batch = all_windows[i : i + batch_size]
            # Extract just the windows for processing, keeping track of request indices
            batch_indices, batch_windows = zip(*batch)

            batch_nlls = self._loglikelihood_tokens(
                requests=batch_windows,
                disable_tqdm=False,
                override_bs=len(batch_windows),
1079
            )
1080
1081
            # Store results with their request indices
            all_nlls.extend(zip(batch_indices, batch_nlls))
1082

1083
1084
1085
        # Remove padding if necessary
        if (self.world_size > 1) and (pad_amnt > 0):
            all_nlls = all_nlls[:-pad_amnt]
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        # Reconstruct per-request loglikelihoods
        loglikelihoods = []
        current_idx = 0
        for window_count in request_window_counts:
            # Get all nlls for this request
            request_nlls = all_nlls[current_idx : current_idx + window_count]
            # Sum up the nlls for this request (discarding is_greedy)
            request_total = sum(nll[0] for _, nll in request_nlls)
            loglikelihoods.append(request_total)
            current_idx += window_count

            string = requests[len(loglikelihoods) - 1].args[0]
            self.cache_hook.add_partial(
                "loglikelihood_rolling", (string,), request_total
            )
1102

1103
        return loglikelihoods
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1104

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    def _batch_scheduler(self, pos, n_reordered_requests):
        sched = pos // int(len(n_reordered_requests) / self.batch_schedule)
        if sched in self.batch_sizes:
            return self.batch_sizes[sched]
        if (len(self.batch_sizes) > 1) and (
            self.batch_sizes[sched - 1] == self.max_batch_size
        ):
            # if previous batch size is already maximal, skip recomputation
            self.batch_sizes[sched] = self.max_batch_size
            return self.batch_sizes[sched]
        print(
            f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
        )
Zhiwei Zhuang's avatar
Zhiwei Zhuang committed
1118
        self.batch_sizes[sched] = self._detect_batch_size(n_reordered_requests, pos)
1119
1120
        print(f"Determined largest batch size: {self.batch_sizes[sched]}")
        return self.batch_sizes[sched]
1121

Ethan Smith's avatar
Ethan Smith committed
1122
    def _loglikelihood_tokens(
baberabb's avatar
baberabb committed
1123
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1124
        requests: list[tuple[tuple[str, str], list[int], list[int]]],
baberabb's avatar
baberabb committed
1125
        disable_tqdm: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1126
1127
        override_bs: int | None = None,
    ) -> list[tuple[float, bool]]:
1128
1129
1130
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

Baber Abbasi's avatar
Baber Abbasi committed
1131
1132
        def _collate(req: tuple[tuple[str, str], list[int], list[int]]):
            """Defines the key for the sorted method."""
1133
1134
1135
1136
1137
1138
1139
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

Baber Abbasi's avatar
Baber Abbasi committed
1140
            toks = req[1] + req[2]
1141
1142
            return -len(toks), tuple(toks)

Baber Abbasi's avatar
Baber Abbasi committed
1143
1144
        def _lookup_one_token_cont(req: tuple[tuple[str, str], list[int], list[int]]):
            """Defines the key to group and lookup one-token continuations."""
Baber Abbasi's avatar
Baber Abbasi committed
1145
            # Use with group_by="contexts" (optional)"
Baber Abbasi's avatar
Baber Abbasi committed
1146
            # allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
Baber Abbasi's avatar
Baber Abbasi committed
1147
1148
1149
1150
1151
1152
1153
1154
            # speeds up some multiple-choice tasks proportionally to the number of choices.
            # groups requests by context+continuation[:-1] and infer on one request/group.
            return req[-2] + req[-1][:-1]

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by="contexts"
1155
            if self.backend == "causal" and self.logits_cache
Baber Abbasi's avatar
Baber Abbasi committed
1156
1157
1158
            else None,
            group_fn=_lookup_one_token_cont,
        )
Benjamin Fattori's avatar
Benjamin Fattori committed
1159
1160
1161

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
Baber Abbasi's avatar
Baber Abbasi committed
1162
1163
1164
        n_reordered_requests = len(re_ord)
        batch_size = (
            self.batch_size
1165
1166
1167
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
Baber Abbasi's avatar
Baber Abbasi committed
1168
1169
1170
1171
            else 0
        )
        batch_fn = (
            self._batch_scheduler
1172
1173
1174
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
Baber Abbasi's avatar
Baber Abbasi committed
1175
            else None
1176
1177
        )

Baber Abbasi's avatar
Baber Abbasi committed
1178
        chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
1179
1180
1181
1182
1183
        pbar = tqdm(
            total=len(requests),
            disable=(disable_tqdm or (self.rank != 0)),
            desc="Running loglikelihood requests",
        )
haileyschoelkopf's avatar
haileyschoelkopf committed
1184
        for chunk in chunks:
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
            inps = []
            cont_toks_list = []
            inplens = []

            conts = []
            encoder_attns = []

            padding_len_inp = None
            padding_len_cont = None
            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

haileyschoelkopf's avatar
haileyschoelkopf committed
1204
                # how this all works (illustrated on a causal decoder-only setup):
1205
1206
1207
1208
1209
1210
1211
                #          CTX      CONT
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
                # model  \               \
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice

                # when too long to fit in context, truncate from the left
1212
                if self.backend == "causal":
1213
1214
                    total_length = len(context_enc) + len(continuation_enc)
                    if total_length > self.max_length + 1:
1215
                        eval_logger.warning(
1216
1217
1218
1219
                            f"Combined length of context ({len(context_enc)}) and continuation ({len(continuation_enc)}) "
                            f"exceeds model's maximum length ({self.max_length}). "
                            f"Truncating {total_length - self.max_length + 1} tokens from the left."
                        )
1220
1221
1222
                    inp = torch.tensor(
                        (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                        dtype=torch.long,
1223
1224
                        device=self.device,
                    )
1225
                    (inplen,) = inp.shape
1226
                elif self.backend == "seq2seq":
1227
1228
1229
                    inp = torch.tensor(
                        (context_enc)[-self.max_length :],
                        dtype=torch.long,
haileyschoelkopf's avatar
haileyschoelkopf committed
1230
                        device=self.device,
1231
                    )
1232
                    (inplen,) = inp.shape
1233
1234
1235
1236

                    # build encoder attn masks
                    encoder_attns.append(torch.ones_like(inp))

1237
                    cont = torch.tensor(
haileyschoelkopf's avatar
haileyschoelkopf committed
1238
                        (continuation_enc)[-self.max_length :],
1239
1240
                        # TODO: left-shift these?
                        # TODO: our code assumes we never end up truncating conts for either model type
1241
                        dtype=torch.long,
1242
1243
                        device=self.device,
                    )
1244
1245
                    (contlen,) = cont.shape

1246
1247
                    conts.append(cont)

haileyschoelkopf's avatar
haileyschoelkopf committed
1248
1249
1250
1251
1252
                    padding_len_cont = (
                        max(padding_len_cont, contlen)
                        if padding_len_cont is not None
                        else contlen
                    )
1253

haileyschoelkopf's avatar
haileyschoelkopf committed
1254
1255
1256
1257
1258
                padding_len_inp = (
                    max(padding_len_inp, inplen)
                    if padding_len_inp is not None
                    else inplen
                )
1259
1260
1261
1262

                inps.append(inp)  # [1, inp_length]
                cont_toks_list.append(continuation_enc)
                inplens.append(inplen)
haileyschoelkopf's avatar
haileyschoelkopf committed
1263

1264
1265
            # create encoder attn mask and batched conts, if seq2seq
            call_kwargs = {}
1266
            if self.backend == "causal":
1267
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1268
1269
                    padding_len_inp, inps, padding_side="right"
                )  # [batch, padding_len_inp]
1270
            elif self.backend == "seq2seq":
1271
                # TODO: left-pad encoder inps and mask?
1272
                batched_inps = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1273
1274
                    padding_len_inp, inps
                )  # [batch, padding_len_inp]
1275
                batched_conts = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1276
1277
                    padding_len_cont, conts
                )  # [batch, padding_len_cont]
1278
                batched_encoder_mask = pad_and_concat(
haileyschoelkopf's avatar
haileyschoelkopf committed
1279
1280
1281
1282
1283
1284
                    padding_len_inp, encoder_attns
                )  # [batch, padding_len_inp]
                call_kwargs = {
                    "attn_mask": batched_encoder_mask,
                    "labels": batched_conts,
                }
1285
1286

            multi_logits = F.log_softmax(
1287
1288
1289
                self._model_call(batched_inps, **call_kwargs),
                dim=-1,
                dtype=self.softmax_dtype,
1290
            )  # [batch, padding_length (inp or cont), vocab]
1291

Baber Abbasi's avatar
Baber Abbasi committed
1292
            for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
1293
1294
1295
1296
                chunk, multi_logits, inplens, cont_toks_list
            ):
                # Slice to original seq length
                contlen = len(cont_toks)
haileyschoelkopf's avatar
haileyschoelkopf committed
1297
                # take only logits in the continuation
1298
                # (discard context toks if decoder-only ; discard right-padding)
1299
1300
                # also discards + checks for "virtual tokens" in the causal LM's input window
                # from prompt/prefix tuning tokens, if applicable
haileyschoelkopf's avatar
haileyschoelkopf committed
1301
                ctx_len = (
1302
                    inplen + (logits.shape[0] - padding_len_inp)
1303
                    if self.backend == "causal"
haileyschoelkopf's avatar
haileyschoelkopf committed
1304
1305
                    else None
                )
1306
                logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
haileyschoelkopf's avatar
haileyschoelkopf committed
1307
                logits = logits.unsqueeze(0)  # [1, seq, vocab]
1308
1309
1310
1311

                # Check if per-token argmax is exactly equal to continuation
                greedy_tokens = logits.argmax(dim=-1)

Baber Abbasi's avatar
Baber Abbasi committed
1312
1313
1314
1315
1316
                # check for one-token continuation cache hits.
                # noop in case group_by != "contexts" or no cache hit and returns the
                # original args. Otherwise, expands the logits batch dimension and yields each
                # batch along with matching continuation tokens and prompt strings.
                # logits -> [1, seq, vocab]
Baber Abbasi's avatar
Baber Abbasi committed
1317
                for request_str, cont_toks, logits in re_ord.get_cache(  # noqa
Baber Abbasi's avatar
Baber Abbasi committed
1318
1319
1320
1321
1322
1323
1324
1325
                    req_str=request_str,
                    cxt_toks=ctx_tokens,
                    cont_toks=cont_toks,
                    logits=logits,
                ):
                    cont_toks = torch.tensor(
                        cont_toks, dtype=torch.long, device=self.device
                    ).unsqueeze(0)  # [1, seq]
1326
1327
1328
1329
1330
1331
                    # Use trailing slice [-cont_toks.shape[1]:] to handle variable length cont_len (but same ctx+cont[:-1]).
                    # i.e. continuations can be sliced at diff points. Collator ensures we have sufficient greedy_tokens
                    # by choosing key with longest cont if group_by="contexts".
                    max_equal = (
                        greedy_tokens[:, -cont_toks.shape[1] :] == cont_toks
                    ).all()
Baber Abbasi's avatar
Baber Abbasi committed
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

                    # Obtain log-probs at the corresponding continuation token indices
                    # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                    logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                        -1
                    )  # [1, seq]

                    # Answer: (log prob, is-exact-match)
                    answer = (float(logits.sum()), bool(max_equal))

                    res.append(answer)

1344
1345
1346
1347
1348
1349
1350
                    if request_str is not None:
                        # special case: loglikelihood_rolling produces a number of loglikelihood requests
                        # all with cache key None. instead do add_partial on the per-example level
                        # in the loglikelihood_rolling() function for those.
                        self.cache_hook.add_partial(
                            "loglikelihood", request_str, answer
                        )
Baber Abbasi's avatar
Baber Abbasi committed
1351
                    pbar.update(1)
haileyschoelkopf's avatar
haileyschoelkopf committed
1352
1353

        pbar.close()
haileyschoelkopf's avatar
haileyschoelkopf committed
1354

1355
1356
        return re_ord.get_original(res)

1357
    def generate_until(
Baber Abbasi's avatar
Baber Abbasi committed
1358
1359
        self, requests: list[Instance], disable_tqdm: bool = False
    ) -> list[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1360
        res = []
1361

Baber Abbasi's avatar
Baber Abbasi committed
1362
        def _collate(req: tuple[str, dict]):
Baber Abbasi's avatar
Baber Abbasi committed
1363
            """Defines the key for the sorted method"""
1364
1365
1366
1367
1368
1369
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end
Baber Abbasi's avatar
Baber Abbasi committed
1370
1371
            toks = self.tok_encode(req[0])
            return -len(toks), req[0]
1372

1373
1374
        pbar = tqdm(
            total=len(requests),
1375
            disable=(disable_tqdm or (self.rank != 0)),
1376
1377
            desc="Running generate_until requests",
        )
Baber Abbasi's avatar
Baber Abbasi committed
1378
        adaptive_batch_size = None
1379
1380
1381
1382
1383
1384
        if self.batch_size == "auto":
            # using rolling window with maximum context
            print("Passed argument batch_size = auto. Detecting largest batch size")
            batch_size = self._detect_batch_size()
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
1385
        # for each different set of kwargs, we execute all requests, by batch.
Baber Abbasi's avatar
Baber Abbasi committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
        batch_size = (
            self.batch_size
            if self.batch_size != "auto"
            else adaptive_batch_size
            if adaptive_batch_size is not None
            else 0
        )
        batch_fn = (
            self._batch_scheduler
            if self.batch_size == "auto" and not adaptive_batch_size
            else None
        )
1398

Baber Abbasi's avatar
Baber Abbasi committed
1399
1400
1401
        # we group requests by their generation_kwargs,
        # so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
        # in the same batch.
Baber Abbasi's avatar
Baber Abbasi committed
1402
1403
1404
1405
1406
1407
1408
        # group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
        re_ords = Collator(
            [reg.args for reg in requests],
            sort_fn=_collate,
            group_by="gen_kwargs",
            group_fn=lambda x: x[1],
        )
Baber Abbasi's avatar
Baber Abbasi committed
1409
        chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
1410
        eos = self.tok_decode(self.eot_token_id, skip_special_tokens=False)
Baber Abbasi's avatar
Baber Abbasi committed
1411
1412
1413
1414
1415
1416
1417
1418
        for chunk in chunks:
            contexts, all_gen_kwargs = zip(*chunk)
            # we assume all gen kwargs in the batch are the same
            # this is safe to assume because the `grouper` object ensures it.
            gen_kwargs = all_gen_kwargs[0]
            # unpack our keyword arguments.
            if isinstance(gen_kwargs, dict):
                kwargs = copy.deepcopy(gen_kwargs)  # edge case for repeats > 1
1419
1420
                # add EOS token to stop sequences
                until = handle_stop_sequences(kwargs.pop("until", None), eos=eos)
Baber Abbasi's avatar
Baber Abbasi committed
1421
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1422
                raise TypeError(
Baber Abbasi's avatar
Baber Abbasi committed
1423
                    f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
1424
                )
Baber Abbasi's avatar
Baber Abbasi committed
1425
            if "max_gen_toks" in kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
1426
1427
1428
1429
1430
                max_gen_toks = kwargs.pop("max_gen_toks")
            else:
                max_gen_toks = self.max_gen_toks

            # set the max length in tokens of inputs ("context_enc")
1431
            if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1432
1433
                # max len for inputs = max length, minus room to generate the max new tokens
                max_ctx_len = self.max_length - max_gen_toks
Baber Abbasi's avatar
Baber Abbasi committed
1434
1435
1436
                assert max_ctx_len > 0, (
                    f"Invalid configuration: requested max tokens to generate ({max_gen_toks}) must be less than model's maximum sequence length ({self.max_length})."
                )
1437
            elif self.backend == "seq2seq":
Baber Abbasi's avatar
Baber Abbasi committed
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
                # max len for inputs = encoder's whole max_length
                max_ctx_len = self.max_length

            # encode, pad, and truncate contexts for this batch
            context_enc, attn_masks = self.tok_batch_encode(
                contexts,
                left_truncate_len=max_ctx_len,
                truncation=self.truncation,
            )
            context_enc = context_enc.to(self.device)
            attn_masks = attn_masks.to(self.device)
1449

Baber Abbasi's avatar
Baber Abbasi committed
1450
1451
            if "max_length" not in kwargs:
                kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
1452

Baber Abbasi's avatar
Baber Abbasi committed
1453
1454
1455
1456
1457
1458
1459
            # perform batched generation
            cont = self._model_generate(
                context=context_enc,
                attention_mask=attn_masks,
                stop=until,
                **kwargs,
            )
1460

Baber Abbasi's avatar
Baber Abbasi committed
1461
1462
1463
            cont_toks_list = cont.tolist()
            for cont_toks, context in zip(cont_toks_list, contexts):
                # discard context + left-padding toks if using causal decoder-only LM
1464
                if self.backend == "causal":
Baber Abbasi's avatar
Baber Abbasi committed
1465
                    cont_toks = cont_toks[context_enc.shape[1] :]
1466

1467
1468
1469
1470
1471
1472
1473
1474
1475
                # Handle integer think_end_token: find last occurrence and strip tokens after it
                if isinstance(self.think_end_token, int):
                    think_token_indices = [
                        i
                        for i, token in enumerate(cont_toks)
                        if token == self.think_end_token
                    ]
                    if think_token_indices:
                        cont_toks = cont_toks[think_token_indices[-1] + 1 :]
1476

1477
                s = self.tok_decode(cont_toks)
Baber Abbasi's avatar
Baber Abbasi committed
1478

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
                # Strip leading whitespace if we removed thinking tokens
                if isinstance(self.think_end_token, int):
                    s = s.lstrip()

                # Apply post-processing: remove stop sequences and string-based thinking tokens
                s = postprocess_generated_text(
                    generation=s,
                    stop=until,
                    think_end_token=self.think_end_token
                    if isinstance(self.think_end_token, str)
                    else None,
                )
Baber Abbasi's avatar
Baber Abbasi committed
1491
1492
1493
1494
1495
1496
                res.append(s)

                self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
                pbar.update(1)
        # reorder this group of results back to original unsorted form
        res = re_ords.get_original(res)
1497

1498
        pbar.close()
1499

Baber Abbasi's avatar
Baber Abbasi committed
1500
        return res
1501

Baber Abbasi's avatar
Baber Abbasi committed
1502
    def apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1503
        self, chat_history: list[dict[str, str]], add_generation_prompt: bool = True
Baber Abbasi's avatar
Baber Abbasi committed
1504
    ) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
1505
        """Method to apply a chat template to a list of chat history between user and model."""
1506
1507
        try:
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1508
1509
1510
1511
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1512
                **self.chat_template_args,
1513
1514
1515
1516
1517
1518
1519
            )
        except jinja2.exceptions.TemplateError:
            eval_logger.warning(
                "Failed to apply chat template. removing the system role in chat history."
            )
            chat_history = [msg for msg in chat_history if msg["role"] != "system"]
            chat_templated = self.tokenizer.apply_chat_template(
Baber Abbasi's avatar
Baber Abbasi committed
1520
1521
1522
1523
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
1524
                **self.chat_template_args,
1525
1526
1527
            )

        return chat_templated
KonradSzafer's avatar
KonradSzafer committed
1528

1529
    def get_model_info(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
1530
        """Method to get Hugging Face model information for experiment reproducibility."""
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

        def get_model_num_params(model) -> int:
            if hasattr(model, "num_parameters"):
                return model.num_parameters()
            if hasattr(model, "parameters"):
                return sum(p.numel() for p in model.parameters())
            else:
                return -1

        def get_model_dtype(model) -> str:
            if hasattr(model, "dtype"):
                return model.dtype
            else:
                return ""

        def get_model_sha(pretrained: str, revision: str) -> str:
            try:
                model_info = HfApi().model_info(repo_id=pretrained, revision=revision)
                return model_info.sha
            except Exception as e:
Baber Abbasi's avatar
Baber Abbasi committed
1551
                eval_logger.debug(
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
                    f"Failed to get model SHA for {pretrained} at revision {revision}. Error: {e}"
                )
                return ""

        model_info = {
            "model_num_parameters": get_model_num_params(self._model),
            "model_dtype": get_model_dtype(self._model),
            "model_revision": self.revision,
            "model_sha": get_model_sha(self.pretrained, self.revision),
        }
        if self.peft:
            model_info["peft_sha"] = get_model_sha(self.peft, self.revision)
        if self.delta:
            model_info["delta_sha"] = get_model_sha(self.delta, self.revision)
        return model_info