utils.py 19.1 KB
Newer Older
1
2
3
import collections
import fnmatch
import functools
4
import hashlib
5
import importlib.util
6
import inspect
7
import json
8
9
10
import logging
import os
import re
11
from dataclasses import asdict, is_dataclass
12
from itertools import islice
Ashvin Nihalani's avatar
Ashvin Nihalani committed
13
from typing import Any, Callable, Iterable, Iterator, List, Optional, Tuple, Union
14

Lintang Sutawika's avatar
Lintang Sutawika committed
15
import numpy as np
16
import yaml
17
from jinja2 import BaseLoader, Environment, StrictUndefined
sdtblck's avatar
sdtblck committed
18

lintangsutawika's avatar
lintangsutawika committed
19

20
21
22
23
24
logging.basicConfig(
    format="%(asctime)s,%(msecs)03d %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s",
    datefmt="%Y-%m-%d:%H:%M:%S",
    level=logging.INFO,
)
25
eval_logger = logging.getLogger("lm-eval")
sdtblck's avatar
sdtblck committed
26

27
SPACING = " " * 47
sdtblck's avatar
sdtblck committed
28

29
30
31
32
33
HIGHER_IS_BETTER_SYMBOLS = {
    True: "↑",
    False: "↓",
}

sdtblck's avatar
sdtblck committed
34

35
36
37
38
def hash_string(string: str) -> str:
    return hashlib.sha256(string.encode("utf-8")).hexdigest()


39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def escaped_split(text, sep_char, maxsplit=-1):
    """Split text into a list on occurrences of the given separation
    character `sep_char`. The separation character may be escaped by a
    backslash to avoid splitting at that location.

    The separation character must be a string of size 1.

    If `maxsplit` is given, at most `maxsplit` splits are done (thus,
    the list will have at most `maxsplit + 1` elements). If `maxsplit`
    is not specified or less than 0, then there is no limit on the
    number of splits (all possible splits are made).
    """
    assert (
        len(sep_char) == 1
    ), "separation string must be a single character for escaped splitting"

    if maxsplit == 0:
        return text
    maxsplit = max(0, maxsplit)

    return re.split(r"(?<!\\)" + sep_char, text, maxsplit)


haileyschoelkopf's avatar
haileyschoelkopf committed
62
63
64
65
66
def handle_arg_string(arg):
    if arg.lower() == "true":
        return True
    elif arg.lower() == "false":
        return False
67
68
69
70
71
72
    elif arg.isnumeric():
        return int(arg)
    try:
        return float(arg)
    except ValueError:
        return arg
haileyschoelkopf's avatar
haileyschoelkopf committed
73
74


75
76
77
78
79
80
81
82
83
def handle_non_serializable(o):
    if isinstance(o, np.int64) or isinstance(o, np.int32):
        return int(o)
    elif isinstance(o, set):
        return list(o)
    else:
        return str(o)


84
85
86
87
88
89
90
91
92
93
94
95
def sanitize_list(sub):
    """
    Takes possible nested list and recursively converts all inner component to strings
    """
    if isinstance(sub, list):
        return [sanitize_list(item) for item in sub]
    if isinstance(sub, tuple):
        return tuple(sanitize_list(item) for item in sub)
    else:
        return str(sub)


Jason Phang's avatar
gpt3  
Jason Phang committed
96
97
98
99
100
101
def simple_parse_args_string(args_string):
    """
    Parses something like
        args1=val1,arg2=val2
    Into a dictionary
    """
Jason Phang's avatar
Jason Phang committed
102
    args_string = args_string.strip()
Jason Phang's avatar
gpt3  
Jason Phang committed
103
104
    if not args_string:
        return {}
105
    arg_list = [arg for arg in args_string.split(",") if arg]
haileyschoelkopf's avatar
haileyschoelkopf committed
106
107
108
    args_dict = {
        k: handle_arg_string(v) for k, v in [arg.split("=") for arg in arg_list]
    }
Jason Phang's avatar
gpt3  
Jason Phang committed
109
    return args_dict
Leo Gao's avatar
Leo Gao committed
110

Fabrizio Milo's avatar
Fabrizio Milo committed
111

Leo Gao's avatar
Leo Gao committed
112
113
def join_iters(iters):
    for iter in iters:
Leo Gao's avatar
Leo Gao committed
114
        yield from iter
Leo Gao's avatar
Leo Gao committed
115
116


117
118
119
120
121
def group(arr, fn):
    res = collections.defaultdict(list)

    for ob in arr:
        res[fn(ob)].append(ob)
Fabrizio Milo's avatar
Fabrizio Milo committed
122

123
124
    return list(res.values())

Fabrizio Milo's avatar
Fabrizio Milo committed
125

gakada's avatar
gakada committed
126
127
128
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
129
    if isinstance(patterns, str):
130
131
        patterns = [patterns]

gakada's avatar
gakada committed
132
133
134
135
136
137
138
    task_names = set()
    for pattern in patterns:
        for matching in fnmatch.filter(source_list, pattern):
            task_names.add(matching)
    return sorted(list(task_names))


Lintang Sutawika's avatar
Lintang Sutawika committed
139
140
141
142
143
144
def softmax(x):
    """Compute softmax values for each sets of scores in x."""
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


Leo Gao's avatar
Leo Gao committed
145
146
147
148
def general_detokenize(string):
    string = string.replace(" n't", "n't")
    string = string.replace(" )", ")")
    string = string.replace("( ", "(")
Fabrizio Milo's avatar
Fabrizio Milo committed
149
150
    string = string.replace('" ', '"')
    string = string.replace(' "', '"')
Leo Gao's avatar
Fix  
Leo Gao committed
151
    string = re.sub(r" (['.,])", r"\1", string)
152
153
154
    return string


155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
def get_file_task_name(filename: str) -> str:
    """
    Given the sample results filenames, extracts and returns the task name.
    """
    return filename[filename.find("_") + 1 : filename.rfind("_")]


def get_file_datetime(filename: str) -> str:
    """
    Given the results and sample results filenames, extracts and returns the datetime.
    """
    return filename[filename.rfind("_") + 1 :].replace(".json", "")


def sanitize_model_name(model_name: str) -> str:
    """
    Given the model name, returns a sanitized version of it.
    """
    return re.sub(r"[\"<>:/\|\\?\*\[\]]+", "__", model_name)


def sanitize_task_name(task_name: str) -> str:
    """
    Given the task name, returns a sanitized version of it.
    """
    return re.sub(r"\W", "_", task_name)


def get_latest_filename(filenames: List[str]) -> str:
    """
    Given a list of filenames, returns the filename with the latest datetime.
    """
    return max(filenames, key=lambda f: get_file_datetime(f))


def get_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to aggregated results.
    """
    return [f for f in filenames if "/results_" in f and ".json" in f]


def get_sample_results_filenames(filenames: List[str]) -> List[str]:
    """
    Extracts filenames that correspond to sample results.
    """
    return [f for f in filenames if "/samples_" in f and ".json" in f]


Jason Phang's avatar
Jason Phang committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len):
    """
    - context_len allows for a rolling window context, allowing each prediction window to potentially
      condition on some context

    :param token_list: list
        List of tokens to be PREDICTED
    :param max_seq_len: int
        max_seq_len of model (or max_seq_len we want to use)
    :param context_len: int
        Amount of desired token context for prediction. Needs to be at least 1.
    :param prefix_token: token
        Dummy token like <eos> so the first token has something to condition on
    :return: generator
        Generator of tuples
            (input_tokens, pred_tokens)
        Note: Score only the last len(pred_tokens) logits of the LM
    """
    assert 1 <= context_len <= max_seq_len
    if not token_list:
        return
    # +1 offset, going from input->preds
    pred_len = max_seq_len - context_len + 1
    predicted = 0

    # Special handling for first window: predict all tokens
    first_seq_len = min(max_seq_len, len(token_list))
Fabrizio Milo's avatar
Fabrizio Milo committed
231
    yield ([prefix_token] + token_list[: first_seq_len - 1], token_list[:first_seq_len])
Jason Phang's avatar
Jason Phang committed
232
233
234
235
236
    predicted += first_seq_len

    while predicted < len(token_list):
        window_pred_len = min(len(token_list) - predicted, pred_len)
        window_end = predicted + window_pred_len
Leo Gao's avatar
Leo Gao committed
237

Jason Phang's avatar
Jason Phang committed
238
        yield (
lintangsutawika's avatar
lintangsutawika committed
239
240
            token_list[window_end - max_seq_len - 1 : window_end - 1],
            token_list[window_end - window_pred_len : window_end],
Jason Phang's avatar
Jason Phang committed
241
242
243
        )
        predicted += window_pred_len

Fabrizio Milo's avatar
Fabrizio Milo committed
244

Leo Gao's avatar
Leo Gao committed
245
def make_disjoint_window(pair):
Fabrizio Milo's avatar
Fabrizio Milo committed
246
    """Takes output from get_rolling_token_windows and makes the context not overlap with the continuation"""
Leo Gao's avatar
Leo Gao committed
247
    a, b = pair
248
    return a[: len(a) - (len(b) - 1)], b
Fabrizio Milo's avatar
Fabrizio Milo committed
249

Jason Phang's avatar
Jason Phang committed
250

251
252
253
254
255
256
257
258
259
260
261
262
class EnhancedJSONEncoder(json.JSONEncoder):
    """
    Provides a proper json encoding for the loggers and trackers json dumps.
    Notably manages the json encoding of dataclasses.
    """

    def default(self, o):
        if is_dataclass(o):
            return asdict(o)
        return super().default(o)


263
class Reorderer:
baberabb's avatar
baberabb committed
264
265
266
267
268
269
270
    def __init__(self, arr: List[Any], fn: Callable) -> None:
        """Reorder an array according to some function

        Args:
            arr (List[Any]): The initial array
            fn (Callable[[Any], Any]): A function to determine the priority of elements
        """
271
272
273
        self.size = len(arr)
        arr = list(enumerate(arr))
        arr = group(arr, lambda x: fn(x[1]))
274
275
276
        # arr = [([y[0] for y in x], x[0][1]) for x in arr]
        # TODO: overhaul reorderer. It currently grouped requests by content but we don't want this
        arr = [([y[0]], x[0][1]) for x in arr for y in x]
277
278
279
        arr.sort(key=lambda x: fn(x[1]))

        self.arr = arr
Fabrizio Milo's avatar
Fabrizio Milo committed
280

281
    def get_reordered(self):
baberabb's avatar
baberabb committed
282
283
284
285
286
        """Gets the reordered array

        Returns:
            List[Any]: The reordered array
        """
287
        return [x[1] for x in self.arr]
Fabrizio Milo's avatar
Fabrizio Milo committed
288

289
    def get_original(self, newarr):
baberabb's avatar
baberabb committed
290
291
292
293
294
295
296
297
        """Restores the original order of a new array based on the old array's order

        Args:
            newarr (List[Any]): The array to be restored

        Returns:
            List[Any]: The array restored to the original order
        """
298
299
300
301
        res = [None] * self.size
        cov = [False] * self.size

        for (inds, _), v in zip(self.arr, newarr):
Fabrizio Milo's avatar
Fabrizio Milo committed
302
            for ind in inds:
303
304
                res[ind] = v
                cov[ind] = True
Fabrizio Milo's avatar
Fabrizio Milo committed
305

306
        assert all(cov)
Fabrizio Milo's avatar
Fabrizio Milo committed
307

308
309
        return res

Fabrizio Milo's avatar
Fabrizio Milo committed
310

311
def make_table(result_dict, column: str = "results", sort_results: bool = True):
312
    """Generate table of results."""
313
    from pytablewriter import LatexTableWriter, MarkdownTableWriter
314

lintangsutawika's avatar
lintangsutawika committed
315
    if column == "results":
lintangsutawika's avatar
lintangsutawika committed
316
317
318
        column_name = "Tasks"
    elif column == "groups":
        column_name = "Groups"
lintangsutawika's avatar
lintangsutawika committed
319

lintangsutawika's avatar
lintangsutawika committed
320
    all_headers = [
lintangsutawika's avatar
lintangsutawika committed
321
        column_name,
lintangsutawika's avatar
lintangsutawika committed
322
323
        "Version",
        "Filter",
324
        "n-shot",
lintangsutawika's avatar
lintangsutawika committed
325
        "Metric",
326
        "",
lintangsutawika's avatar
lintangsutawika committed
327
328
329
330
        "Value",
        "",
        "Stderr",
    ]
331

lintangsutawika's avatar
lintangsutawika committed
332
333
334
335
336
    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = all_headers
    latex_writer.headers = all_headers

337
338
    values = []

339
340
341
342
343
344
    keys = result_dict[column].keys()
    if sort_results:
        # sort entries alphabetically
        keys = sorted(keys)
    for k in keys:
        dic = result_dict[column][k]
345
        version = result_dict["versions"].get(k, "N/A")
346
        n = str(result_dict["n-shot"][k])
347
        higher_is_better = result_dict.get("higher_is_better", {}).get(k, {})
348
349
350
351

        if "alias" in dic:
            k = dic.pop("alias")

352
353
354
355
356
        metric_items = dic.items()
        if sort_results:
            metric_items = sorted(metric_items)

        for (mf), v in metric_items:
357
            m, _, f = mf.partition(",")
358
359
360
            if m.endswith("_stderr"):
                continue

361
362
            hib = HIGHER_IS_BETTER_SYMBOLS.get(higher_is_better.get(m), "")

363
364
            if m + "_stderr" + "," + f in dic:
                se = dic[m + "_stderr" + "," + f]
365
366
                if se != "N/A":
                    se = "%.4f" % se
Ashvin Nihalani's avatar
Ashvin Nihalani committed
367
                if isinstance(v, dict):
Ashvin Nihalani's avatar
Ashvin Nihalani committed
368
369
370
371
                    for v_key, v_v in v.items():
                        values.append([k, version, f, n, m + "_" + v_key, "%.4f" % v_v, "±", se])
                else:
                    values.append([k, version, f, n, m, hib, "%.4f" % v, "±", se])
372
            else:
373
                values.append([k, version, f, n, m, hib, "%.4f" % v, "", ""])
374
375
376
377
378
379
380
381
382
383
384
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

    return md_writer.dumps()


385
386
def positional_deprecated(fn):
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
387
    A decorator to nudge users into passing only keyword args (`kwargs`) to the
388
389
    wrapped function, `fn`.
    """
Fabrizio Milo's avatar
Fabrizio Milo committed
390

391
392
    @functools.wraps(fn)
    def _wrapper(*args, **kwargs):
Fabrizio Milo's avatar
Fabrizio Milo committed
393
394
395
        if len(args) != 1 if inspect.ismethod(fn) else 0:
            print(
                f"WARNING: using {fn.__name__} with positional arguments is "
396
                "deprecated and will be disallowed in a future version of "
Fabrizio Milo's avatar
Fabrizio Milo committed
397
398
                "lm-evaluation-harness!"
            )
399
        return fn(*args, **kwargs)
Fabrizio Milo's avatar
Fabrizio Milo committed
400

401
    return _wrapper
Stephen Hogg's avatar
Stephen Hogg committed
402

Fabrizio Milo's avatar
Fabrizio Milo committed
403

404
405
406
407
def ignore_constructor(loader, node):
    return node


lintangsutawika's avatar
lintangsutawika committed
408
409
410
411
def import_function(loader, node):
    function_name = loader.construct_scalar(node)
    yaml_path = os.path.dirname(loader.name)

lintangsutawika's avatar
lintangsutawika committed
412
    *module_name, function_name = function_name.split(".")
413
    if isinstance(module_name, list):
lintangsutawika's avatar
lintangsutawika committed
414
415
        module_name = ".".join(module_name)
    module_path = os.path.normpath(os.path.join(yaml_path, "{}.py".format(module_name)))
lintangsutawika's avatar
lintangsutawika committed
416
417
418
419
420
421
422
423

    spec = importlib.util.spec_from_file_location(module_name, module_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)

    function = getattr(module, function_name)
    return function

lintangsutawika's avatar
lintangsutawika committed
424

425
426
427
428
429
def load_yaml_config(yaml_path=None, yaml_config=None, yaml_dir=None, mode="full"):
    if mode == "simple":
        constructor_fn = ignore_constructor
    elif mode == "full":
        constructor_fn = import_function
lintangsutawika's avatar
lintangsutawika committed
430

431
432
    # Add the import_function constructor to the YAML loader
    yaml.add_constructor("!function", constructor_fn)
433
434
435
    if yaml_config is None:
        with open(yaml_path, "rb") as file:
            yaml_config = yaml.full_load(file)
lintangsutawika's avatar
lintangsutawika committed
436

lintangsutawika's avatar
lintangsutawika committed
437
438
    if yaml_dir is None:
        yaml_dir = os.path.dirname(yaml_path)
439
440
441
442
443
444
445

    assert yaml_dir is not None

    if "include" in yaml_config:
        include_path = yaml_config["include"]
        del yaml_config["include"]

446
        if isinstance(include_path, str):
447
448
449
450
451
452
453
454
455
456
457
458
459
            include_path = [include_path]

        # Load from the last one first
        include_path.reverse()
        final_yaml_config = {}
        for path in include_path:
            # Assumes that path is a full path.
            # If not found, assume the included yaml
            # is in the same dir as the original yaml
            if not os.path.isfile(path):
                path = os.path.join(yaml_dir, path)

            try:
460
                included_yaml_config = load_yaml_config(yaml_path=path, mode=mode)
461
462
463
464
465
466
467
468
                final_yaml_config.update(included_yaml_config)
            except Exception as ex:
                # If failed to load, ignore
                raise ex

        final_yaml_config.update(yaml_config)
        return final_yaml_config
    return yaml_config
lintangsutawika's avatar
lintangsutawika committed
469
470


Ethan Smith's avatar
Ethan Smith committed
471
def regex_replace(string, pattern, repl, count: int = 0):
472
473
    """Implements the `re.sub` function as a custom Jinja filter."""
    return re.sub(pattern, repl, string, count=count)
lintangsutawika's avatar
lintangsutawika committed
474

lintangsutawika's avatar
lintangsutawika committed
475

476
env = Environment(loader=BaseLoader, undefined=StrictUndefined)
477
env.filters["regex_replace"] = regex_replace
478
479


baberabb's avatar
baberabb committed
480
def apply_template(template: str, doc: dict) -> str:
481
482
    rtemplate = env.from_string(template)
    return rtemplate.render(**doc)
483
484


485
def create_iterator(raw_iterator, *, rank=0, world_size=1, limit=None):
486
487
488
    """
    Method for creating a (potentially) sliced and limited
    iterator from a raw document iterator. Used for splitting data
489
490
491
    among ranks in multigpu setting or only pulling a sample of documents
    """
    return islice(raw_iterator, rank, limit, world_size)
Ashvin Nihalani's avatar
Ashvin Nihalani committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648

class Collator:
    """
    A class for reordering and batching elements of an array.

    This class allows for sorting an array based on a provided sorting function, grouping elements based on a grouping function, and generating batches from the sorted and grouped data.
    """

    def __init__(
        self,
        arr: List,
        sort_fn: Callable,
        group_fn: Callable = lambda x: x[1],
        grouping: bool = False,
    ) -> None:
        self.grouping = grouping
        self.fn = sort_fn
        self.group_fn = lambda x: group_fn(x[1])  # first index are enumerated indices
        self.reorder_indices: List = []
        self.size = len(arr)
        self.arr_with_indices: Iterable[Any] = tuple(enumerate(arr))  # [indices, (arr)]
        if self.grouping is True:
            self.group_by_index()

    def group_by_index(self) -> None:
        self.arr_with_indices = self.group(self.arr_with_indices, fn=self.group_fn, values=False)

    def get_batched(self, n: int = 1, batch_fn: Optional[Callable] = None) -> Iterator:
        """
        Generates and yields batches from the reordered array.

        Parameters:
        - n (int): The size of each batch. Defaults to 1.
        - batch_fn (Optional[Callable[[int, Iterable], int]]): A function to determine the size of each batch. Defaults to None.

        Yields:
        Iterator: An iterator over batches of reordered elements.
        """
        if self.grouping:
            for (
                key,
                values,
            ) in self.arr_with_indices.items():  # type: ignore
                values = self._reorder(values)
                batch = self.get_chunks(values, n=n, fn=batch_fn)
                yield from batch
        else:
            values = self._reorder(self.arr_with_indices)  # type: ignore
            batch = self.get_chunks(values, n=n, fn=batch_fn)
            yield from batch

    def _reorder(self, arr: Union[List, Tuple[Tuple[int, Any], ...]]) -> List:
        """
        Reorders the elements in the array based on the sorting function.

        Parameters:
        - arr (Union[List, Tuple[Tuple[int, Any], ...]]): The array or iterable to be reordered.

        Yields:
        List: Yields reordered elements one by one.
        """
        arr = sorted(arr, key=lambda x: self.fn(x[1]))
        self.reorder_indices.extend([x[0] for x in arr])
        yield from [x[1] for x in arr]

    def get_original(self, newarr: List) -> List:
        """
        Restores the original order of elements from the reordered list.

        Parameters:
        - newarr (List): The reordered array.

        Returns:
        List: The array with elements restored to their original order.
        """
        res = [None] * self.size
        cov = [False] * self.size

        for ind, v in zip(self.reorder_indices, newarr):
            res[ind] = v
            cov[ind] = True

        assert all(cov)

        return res

    def __len__(self):
        return self.size

    @staticmethod
    def group(arr: Iterable, fn: Callable, values: bool = False) -> Iterable:
        """
        Groups elements of an iterable based on a provided function.

        Parameters:
        - arr (Iterable): The iterable to be grouped.
        - fn (Callable): The function to determine the grouping.
        - values (bool): If True, returns the values of the group. Defaults to False.

        Returns:
        Iterable: An iterable of grouped elements.
        """
        res = collections.defaultdict(list)
        for ob in arr:
            try:
                hashable_dict = tuple(
                    (
                        key,
                        tuple(value) if isinstance(value, collections.abc.Iterable) else value,
                    )
                    for key, value in sorted(fn(ob).items())
                )
                res[hashable_dict].append(ob)
            except TypeError:
                res[fn(ob)].append(ob)
        if not values:
            return res
        return res.values()

    @staticmethod
    def get_chunks(_iter, n: int = 0, fn=None):
        """
        Divides an iterable into chunks of specified size or based on a given function.
        Useful for batching

        Parameters:
        - iter: The input iterable to be divided into chunks.
        - n: An integer representing the size of each chunk. Default is 0.
        - fn: A function that takes the current index and the iterable as arguments and returns the size of the chunk. Default is None.

        Returns:
        An iterator that yields chunks of the input iterable.

        Example usage:
        ```
        data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        for chunk in chunks(data, 3):
            print(chunk)
        ```
        Output:
        ```
        [1, 2, 3]
        [4, 5, 6]
        [7, 8, 9]
        [10]
        ```
        """
        arr = []
        _iter = tuple(_iter)
        for i, x in enumerate(_iter):
            arr.append(x)
            if len(arr) == (fn(i, _iter) if fn else n):
                yield arr
                arr = []

        if arr:
            yield arr