base.py 34.8 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
from sqlitedict import SqliteDict
11
from tqdm import tqdm
12
import torch
Leo Gao's avatar
Leo Gao committed
13
import torch.nn.functional as F
14
from accelerate import find_executable_batch_size
&'s avatar
& committed
15

16
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
17
from lm_eval import utils
18
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
19

Jason Phang's avatar
Jason Phang committed
20

Leo Gao's avatar
Leo Gao committed
21
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
22
23
24
    def __init__(self):
        self.cache_hook = CacheHook(None)

25
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
26
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
27
        """Compute log-likelihood of generating a continuation from a context.
Fabrizio Milo's avatar
Fabrizio Milo committed
28
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
29
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
30

Leo Gao's avatar
Leo Gao committed
31
32
33
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Fabrizio Milo's avatar
Fabrizio Milo committed
34
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
35
                empty context string.
Leo Gao's avatar
Leo Gao committed
36
            continuation: str
Fabrizio Milo's avatar
Fabrizio Milo committed
37
38
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
39
40
41
42
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
43
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
44
            isgreedy:
Jason Phang's avatar
Jason Phang committed
45
46
47
48
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

49
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
50
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
51
52
53
54
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
Jason Phang's avatar
Jason Phang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
88
89
90
        """
        pass

&'s avatar
& committed
91
    # TODO: Add an optional max length
92
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
93
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
94
95
96
97
98
99
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
100
            until: [str]
Fabrizio Milo's avatar
Fabrizio Milo committed
101
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
102
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
103
104
105
106
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
107
        """
Leo Gao's avatar
Leo Gao committed
108
109
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
110
    @classmethod
111
112
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
113
114
115
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
116

Leo Gao's avatar
Leo Gao committed
117
118
119
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
120

121
class BaseLM(LM):
122
123
124
125
126
127
    def __init__(self):
        super().__init__()
        self.batch_schedule = 1
        self.batch_sizes = {}
        self.max_batch_size = 512

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

153
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
154
155
156
    def tok_encode(self, string: str):
        pass

157
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
158
159
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
160

161
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
162
163
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
164

165
166
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
167
        """
168
169
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
170

171
        returns: a torch tensor of shape [batch, sequence, vocab] with the
172
        logits returned from the model
173
174
        """
        pass
175

176
177
178
    def _detect_batch_size(self, requests=None, pos=0):
        if requests:
            _, context_enc, continuation_enc = requests[pos]
179
180
181
            max_length = len(
                (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1]
            )
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        else:
            max_length = self.max_length

        # if OOM, then halves batch_size and tries again
        @find_executable_batch_size(starting_batch_size=self.max_batch_size)
        def forward_batch(batch_size):
            test_batch = torch.ones((batch_size, max_length), device=self.device).long()
            for _ in range(5):
                _ = F.log_softmax(self._model_call(test_batch), dim=-1).cpu()
            return batch_size

        batch_size = forward_batch()
        utils.clear_torch_cache()

        return batch_size

Leo Gao's avatar
Leo Gao committed
198
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
199
200
    # TODO: enforce this somehow

gakada's avatar
gakada committed
201
    def _encode_pair(self, context, continuation):
202
203
204
205
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
gakada's avatar
gakada committed
206
207
208
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
209
        continuation_enc = whole_enc[context_enc_len:]
gakada's avatar
gakada committed
210
211
        return context_enc, continuation_enc

212
213
214
215
216
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
217
218
219
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(
                    continuation
                )
220
            else:
gakada's avatar
gakada committed
221
                context_enc, continuation_enc = self._encode_pair(context, continuation)
222
223
224
225
226
227
228

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
229

230
231
        # automatic batch size detection for vectorization
        adaptive_batch_size = None
232
        if self.batch_size == "auto":
233
            # using rolling window with maximum context
234
            print("Passed argument batch_size = auto. Detecting largest batch size")
235
            batch_size = self._detect_batch_size()
236
237
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
238
239

        loglikelihoods = []
Fabrizio Milo's avatar
Fabrizio Milo committed
240
241
242
243
244
245
246
247
248
249
250
251
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
252
253
254

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

255
256
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
Fabrizio Milo's avatar
Fabrizio Milo committed
257
            string_nll = self._loglikelihood_tokens(
258
259
260
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
Fabrizio Milo's avatar
Fabrizio Milo committed
261
262
            )

263
264
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
Fabrizio Milo's avatar
Fabrizio Milo committed
265

266
267
268
269
270
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

271
    def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs=None):
272
273
274
275
276
277
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
278
279
280
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
281
282
283
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
284
            return -len(toks), tuple(toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
285

Fabrizio Milo's avatar
Fabrizio Milo committed
286
        re_ord = utils.Reorderer(requests, _collate)
287

288
289
290
        reordered_requests = re_ord.get_reordered()
        n_reordered_requests = len(reordered_requests)

291
292
        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
293
294
295
296
        def _batch_scheduler(pos):
            sched = pos // int(n_reordered_requests / self.batch_schedule)
            if sched in self.batch_sizes:
                return self.batch_sizes[sched]
297
298
299
            print(
                f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size"
            )
300
301
302
            self.batch_sizes[sched] = self._detect_batch_size(reordered_requests, pos)
            print(f"Determined largest batch size: {self.batch_sizes[sched]}")
            return self.batch_sizes[sched]
303

Fabrizio Milo's avatar
Fabrizio Milo committed
304
        for chunk in utils.chunks(
305
            tqdm(reordered_requests, disable=disable_tqdm),
306
307
308
309
310
311
            n=self.batch_size
            if self.batch_size != "auto"
            else override_bs
            if override_bs is not None
            else 0,
            fn=_batch_scheduler
jonabur's avatar
jonabur committed
312
313
314
            if self.batch_size == "auto"
            and n_reordered_requests > 0
            and not override_bs
315
            else None,
Fabrizio Milo's avatar
Fabrizio Milo committed
316
        ):
317
            inps = []
318
            cont_toks_list = []
319
            inplens = []
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
335
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
336
                # gpt2    \               \
337
338
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
339
340
341

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
Fabrizio Milo's avatar
Fabrizio Milo committed
342
343
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
344
                ).to(self.device)
Fabrizio Milo's avatar
Fabrizio Milo committed
345
                (inplen,) = inp.shape
346
347
348
349

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
Fabrizio Milo's avatar
Fabrizio Milo committed
350
351
352
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
353

354
                # pad length from seq to padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
355
356
357
358
359
360
361
362
363
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
364

365
366
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
367
                inplens.append(inplen)
368

369
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length]
Fabrizio Milo's avatar
Fabrizio Milo committed
370
371
372
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
373

374
375
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
Fabrizio Milo's avatar
Fabrizio Milo committed
376
            ):
377

378
379
                # Slice to original seq length
                contlen = len(cont_toks)
jonabur's avatar
jonabur committed
380
381
382
                inplen = inplen + (
                    logits.shape[0] - padding_length
                )  # if "virtual tokens" (from prompt tuning) are added, inplen is larger
Fabrizio Milo's avatar
Fabrizio Milo committed
383
384
385
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
386

387
                # Check if per-token argmax is exactly equal to continuation
388
                greedy_tokens = logits.argmax(dim=-1)
Fabrizio Milo's avatar
Fabrizio Milo committed
389
390
391
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
392
393
                max_equal = (greedy_tokens == cont_toks).all()

394
395
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
Fabrizio Milo's avatar
Fabrizio Milo committed
396
397
398
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
399

400
                # Answer: (log prob, is-exact-match)
401
402
403
404
405
406
407
408
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

Fabrizio Milo's avatar
Fabrizio Milo committed
409
        return re_ord.get_original(res)
Fabrizio Milo's avatar
Fabrizio Milo committed
410

411
    def greedy_until(self, requests):
Fabrizio Milo's avatar
Fabrizio Milo committed
412
        # TODO: implement fully general `until` that handles until that are
413
        #       multiple tokens or that span multiple tokens correctly
414
415
416
417
418

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
419
420
421
422
423
424
425
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

426
            toks = self.tok_encode(x[0])
427
            return -len(toks), x[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
428

Fabrizio Milo's avatar
Fabrizio Milo committed
429
        re_ord = utils.Reorderer(requests, _collate)
430

431
        warn_stop_seq = False
432
        for context, request_args in tqdm(re_ord.get_reordered()):
433
            until = request_args["until"]
434
435
            if isinstance(until, str):
                until = [until]
436

437
            if until:
438
439
440
441
442
443
444
445
446
                try:
                    (primary_until,) = self.tok_encode(until[0])
                except ValueError:
                    if not warn_stop_seq:
                        print(
                            "Warning: a primary stop sequence is multi-token! Will default to EOS token for this tokenizer. Consider using `hf-causal-experimental` for multi-token stop sequence support for the time being."
                        )
                        warn_stop_seq = True
                    primary_until = self.eot_token_id
447
448
            else:
                primary_until = None
449

Fabrizio Milo's avatar
Fabrizio Milo committed
450
451
452
            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
453

454
            max_gen_tokens = min(
455
                self.max_gen_toks, request_args.get("max_length", self.max_gen_toks)
456
            )
Fabrizio Milo's avatar
Fabrizio Milo committed
457
            cont = self._model_generate(
458
                context_enc, context_enc.shape[1] + max_gen_tokens, primary_until
Fabrizio Milo's avatar
Fabrizio Milo committed
459
460
461
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
462
463
464

            for term in until:
                s = s.split(term)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
465

466
467
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
Fabrizio Milo's avatar
Fabrizio Milo committed
468

469
            res.append(s)
Fabrizio Milo's avatar
Fabrizio Milo committed
470

Fabrizio Milo's avatar
Fabrizio Milo committed
471
        return re_ord.get_original(res)
Leo Gao's avatar
Leo Gao committed
472

Leo Gao's avatar
Leo Gao committed
473

474
class Task(abc.ABC):
&'s avatar
&amp; committed
475
476
477
478
479
480
481
482
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
483

Jon Tow's avatar
Jon Tow committed
484
485
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
486
487
488
489
490
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
515
        self._training_docs = None
516
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
517

Jon Tow's avatar
Jon Tow committed
518
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
Fabrizio Milo's avatar
Fabrizio Milo committed
519
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
520
521
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
542
543
544
545
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
546
547
            data_dir=data_dir,
            cache_dir=cache_dir,
Fabrizio Milo's avatar
Fabrizio Milo committed
548
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
549
        )
sdtblck's avatar
sdtblck committed
550

551
552
553
554
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return False

555
    @abstractmethod
556
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
557
        """Whether the task has a training set"""
558
        pass
559

560
    @abstractmethod
561
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
562
563
564
        """Whether the task has a validation set"""
        pass

565
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
566
567
    def has_test_docs(self):
        """Whether the task has a test set"""
568
569
        pass

Leo Gao's avatar
Leo Gao committed
570
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
571
572
573
574
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
575
        return []
576

Leo Gao's avatar
Leo Gao committed
577
    def validation_docs(self):
578
579
580
581
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
582
        return []
583

Leo Gao's avatar
Leo Gao committed
584
    def test_docs(self):
585
586
587
588
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
589
        return []
Leo Gao's avatar
Leo Gao committed
590

Jon Tow's avatar
Jon Tow committed
591
592
593
594
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
595
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
596
597
598
599
600
601

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

602
    def fewshot_examples(self, k, rnd):
603
604
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
605

Leo Gao's avatar
Leo Gao committed
606
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
607

608
    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
609
610
611
612
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False
613

614
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
615
616
617
    def doc_to_text(self, doc):
        pass

618
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
619
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
620
        pass
Leo Gao's avatar
Leo Gao committed
621

622
    @abstractmethod
623
    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
624
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
625
626
        Requests which will be sent to the LM.

627
628
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
629
        :param ctx: str
Fabrizio Milo's avatar
Fabrizio Milo committed
630
            The context string, generated by fewshot_context. This includes the natural
631
            language description, as well as the few shot examples, and the question
Fabrizio Milo's avatar
Fabrizio Milo committed
632
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
633
        """
Leo Gao's avatar
Leo Gao committed
634
        pass
635

636
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
637
    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
638
639
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
640
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
641
642
643
644
645

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
646
        """
Leo Gao's avatar
Leo Gao committed
647
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
648

649
    @abstractmethod
650
651
    def aggregation(self):
        """
&'s avatar
&amp; committed
652
        :returns: {str: [metric_score] -> float}
Fabrizio Milo's avatar
Fabrizio Milo committed
653
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
654
            functions that aggregate a list of metric scores
655
656
657
        """
        pass

658
    @abstractmethod
659
660
661
    def higher_is_better(self):
        """
        :returns: {str: bool}
Fabrizio Milo's avatar
Fabrizio Milo committed
662
            A dictionary where keys are the names of submetrics and values are
663
664
665
666
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
667
    def fewshot_description(self):
668
        import warnings
Fabrizio Milo's avatar
Fabrizio Milo committed
669

670
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
671
            "`fewshot_description` will be removed in futures versions. Pass "
672
            "any custom descriptions to the `evaluate` function instead.",
Fabrizio Milo's avatar
Fabrizio Milo committed
673
674
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
675
676
        return ""

677
    @utils.positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
678
679
680
681
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
682
683
684
685
686
687
688
689
690
691
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
692
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
693
694
695
696
697
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
698
699
700
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
701
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
702
            "The `provide_description` arg will be removed in future versions. To prepend "
703
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
704
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
705
        )
706
707
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
708
709
710
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
711

712
        description = description + "\n\n" if description else ""
713

714
715
        if num_fewshot == 0:
            labeled_examples = ""
716
        else:
717
718
719
720
721
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
722
                    self._fewshot_docs = list(
Fabrizio Milo's avatar
Fabrizio Milo committed
723
724
725
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
726
                    )
727

728
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
729

730
731
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
732

Fabrizio Milo's avatar
Fabrizio Milo committed
733
734
735
736
737
738
739
740
741
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
742

743
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
744
745
746
        return description + labeled_examples + example


Jon Tow's avatar
Jon Tow committed
747
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
748
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
749
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
750

Leo Gao's avatar
Leo Gao committed
751
752
    def construct_requests(self, doc, ctx):
        lls = [
Fabrizio Milo's avatar
Fabrizio Milo committed
753
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
754
755
756
757
758
759
760
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Fabrizio Milo's avatar
Fabrizio Milo committed
761
        acc = 1.0 if np.argmax(results) == gold else 0.0
762
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Fabrizio Milo's avatar
Fabrizio Milo committed
763
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
764
765

        return {
Leo Gao's avatar
Leo Gao committed
766
767
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
768
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
769

Leo Gao's avatar
Leo Gao committed
770
771
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
772
773
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
774
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
775

Leo Gao's avatar
Leo Gao committed
776
777
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
778
779
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
780
781
782
        }


Jason Phang's avatar
Jason Phang committed
783
class PerplexityTask(Task, abc.ABC):
784
785
786
787
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return True

Jason Phang's avatar
Jason Phang committed
788
789
790
791
792
793
794
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

Fabrizio Milo's avatar
Fabrizio Milo committed
795
796
797
798
799
800
801
802
803
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
804
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
805
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
806
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
807
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
808
        )
809
810
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
811
812
813
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
814

Jason Phang's avatar
Jason Phang committed
815
816
817
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
818
819
820
821
822
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
823

824
825
826
    def doc_to_decontamination_query(self, doc):
        return doc

Jason Phang's avatar
Jason Phang committed
827
    def doc_to_text(self, doc):
828
        return ""
Jason Phang's avatar
Jason Phang committed
829
830

    def doc_to_target(self, doc):
831
        return doc
Jason Phang's avatar
Jason Phang committed
832
833
834

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
835
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
836
837
838
        return req

    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
839
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
840
        words = self.count_words(doc)
841
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
842
        return {
Leo Gao's avatar
Leo Gao committed
843
            "word_perplexity": (loglikelihood, words),
844
            "byte_perplexity": (loglikelihood, bytes_),
845
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
846
847
848
849
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
850
851
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
852
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
853
854
        }

855
856
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
857
        return len(doc.encode("utf-8"))
858
859
860

    @classmethod
    def count_words(cls, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
861
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
862
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
863

Jason Phang's avatar
Jason Phang committed
864

Leo Gao's avatar
Leo Gao committed
865
866
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
Fabrizio Milo's avatar
Fabrizio Milo committed
867
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
868
869


Leo Gao's avatar
Leo Gao committed
870
871
class CacheHook:
    def __init__(self, cachinglm):
Fabrizio Milo's avatar
Fabrizio Milo committed
872
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
873
874
875
876
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
Fabrizio Milo's avatar
Fabrizio Milo committed
877

Leo Gao's avatar
Leo Gao committed
878
879
880
881
882
883
884
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
885
886
class CachingLM:
    def __init__(self, lm, cache_db):
887
888
889
890
891
892
893
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
894
895
        self.lm = lm
        self.cache_db = cache_db
896
897
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
898
899
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
900
901
902
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
903
    def __getattr__(self, attr):
gk's avatar
gk committed
904
905
906
907
        lm_attr = getattr(self.lm, attr)
        if not callable(lm_attr):
            return lm_attr

Leo Gao's avatar
Leo Gao committed
908
909
910
        def fn(requests):
            res = []
            remaining_reqs = []
Fabrizio Milo's avatar
Fabrizio Milo committed
911

Leo Gao's avatar
Leo Gao committed
912
913
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
914
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
915
916
917
918
919
920
921
922
923
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
Fabrizio Milo's avatar
Fabrizio Milo committed
924

925
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
926
927
928
929
930
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
931
932
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
933
934
935
936

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
937
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
938
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
939
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
940
941

            return res
Fabrizio Milo's avatar
Fabrizio Milo committed
942

Leo Gao's avatar
Leo Gao committed
943
        return fn
Fabrizio Milo's avatar
Fabrizio Milo committed
944

Leo Gao's avatar
Leo Gao committed
945
946
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
947

Jason Phang's avatar
Jason Phang committed
948

949
REQUEST_RETURN_LENGTHS = {
Fabrizio Milo's avatar
Fabrizio Milo committed
950
951
952
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
953
954
955
}


956
class Request:
Leo Gao's avatar
Leo Gao committed
957
958
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
Fabrizio Milo's avatar
Fabrizio Milo committed
959
960
961
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
962

Leo Gao's avatar
Leo Gao committed
963
        self.request_type = request_type
964
965
        self.args = args
        self.index = index
Fabrizio Milo's avatar
Fabrizio Milo committed
966

967
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
968
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
969
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
970
971
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
972

973
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
974
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
975
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
976
        return Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
977

Leo Gao's avatar
Leo Gao committed
978
    def __eq__(self, other):
Fabrizio Milo's avatar
Fabrizio Milo committed
979
980
981
982
983
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
984

Leo Gao's avatar
Leo Gao committed
985
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
986
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
987

Jason Phang's avatar
Jason Phang committed
988

Leo Gao's avatar
Leo Gao committed
989
990
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
991
992
        def fn(*args):
            return Request(attr, args)
Fabrizio Milo's avatar
Fabrizio Milo committed
993

Leo Gao's avatar
Leo Gao committed
994
995
996
997
        return fn


rf = RequestFactory()