base.py 26.1 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
from sqlitedict import SqliteDict
11
from tqdm import tqdm
12
import torch
Leo Gao's avatar
Leo Gao committed
13
import torch.nn.functional as F
&'s avatar
& committed
14

15
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
16
from lm_eval import utils
17
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
18

Jason Phang's avatar
Jason Phang committed
19

Leo Gao's avatar
Leo Gao committed
20
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
21
22
23
    def __init__(self):
        self.cache_hook = CacheHook(None)

24
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
25
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
26
27
28
        """Compute log-likelihood of generating a continuation from a context.
        Downstream tasks should attempt to use loglikelihood instead of other 
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
29

Leo Gao's avatar
Leo Gao committed
30
31
32
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Leo Gao's avatar
Leo Gao committed
33
34
                Context string. Implementations of LM must be able to handle an 
                empty context string.
Leo Gao's avatar
Leo Gao committed
35
36
37
38
39
40
41
            continuation: str
                The continuation over which log likelihood will be calculated. If 
                there is a word boundary, the space should be in the continuation. 
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
42
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
43
            isgreedy:
Jason Phang's avatar
Jason Phang committed
44
45
46
47
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

48
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
49
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementaitons
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
87
88
89
        """
        pass

&'s avatar
& committed
90
    # TODO: Add an optional max length
91
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
92
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
93
94
95
96
97
98
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
99
100
101
            until: [str]
                The string sequences to generate until. These string sequences 
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
102
103
104
105
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
106
        """
Leo Gao's avatar
Leo Gao committed
107
108
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
109
    @classmethod
110
111
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
112
113
114
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
115

Leo Gao's avatar
Leo Gao committed
116
117
118
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
119

120
class BaseLM(LM):
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

147
    @abstractmethod
148
149
    def tok_encode(self, string: str): pass
    
150
    @abstractmethod
151
    def tok_decode(self, tokens: Iterable[int]): pass
Jason Phang's avatar
gpt3  
Jason Phang committed
152

153
154
    @abstractmethod
    def _model_generate(self, context, max_length, eos_token_id): pass
Jason Phang's avatar
gpt3  
Jason Phang committed
155

156
157
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
158
        """
159
160
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
161

162
        returns: a torch tensor of shape [batch, sequence, vocab] with the
163
        logits returned from the model
164
165
        """
        pass
166

Leo Gao's avatar
Leo Gao committed
167
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    # TODO: enforce this somehow

    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
                context_enc = [self.eot_token_id]
            else:
                context_enc = self.tok_encode(context)

            continuation_enc = self.tok_encode(continuation)

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
        # TODO: automatic batch size detection for vectorization

        loglikelihoods = []
        for string, in tqdm(requests):
            rolling_token_windows = list(map(utils.make_disjoint_window, utils.get_rolling_token_windows(
                token_list=self.tok_encode(string),
                prefix_token=self.eot_token_id,
                max_seq_len=self.max_length,
                context_len=1,
            )))

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

200
201
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
202
203
204
205
206
207
208
209
210
211
            string_nll = self._loglikelihood_tokens(rolling_token_windows, disable_tqdm=True)
            
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
            
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

212
213
214
215
216
217
218
    def _loglikelihood_tokens(self, requests, disable_tqdm=False):
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
219
220
221
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
222
223
224
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
225
            return -len(toks), tuple(toks)
226
227
228
229
230
        
        # TODO: automatic (variable) batch size detection for vectorization
        reord = utils.Reorderer(requests, _collate)
        for chunk in utils.chunks(tqdm(reord.get_reordered(), disable=disable_tqdm), self.batch_size):
            inps = []
231
            cont_toks_list = []
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
248
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
249
                # gpt2    \               \
250
251
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
252
253
254

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
255
256
257
                    (context_enc + continuation_enc)[-(self.max_length+1):][:-1],
                    dtype=torch.long
                ).to(self.device)
258
259
260
261
262
263
264
                inplen, = inp.shape

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
                padding_length = padding_length if padding_length is not None else inplen

265
                # pad length from seq to padding_length
266
                inp = torch.cat([
267
268
                    inp,  # [seq]
                    torch.zeros(padding_length - inplen, dtype=torch.long).to(inp.device)  # [padding_length - seq]
269
270
                ], dim=0)

271
272
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
273
274
                inplens.append(inplen)

275
276
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
            multi_logits = F.log_softmax(self._model_call(batched_inps), dim=-1).cpu()  # [batch, padding_length, vocab]
277

278
279
            for (cache_key, _, _), logits, inp, inplen, cont_toks \
                    in zip(chunk, multi_logits, inps, inplens, cont_toks_list):
280

281
282
283
                # Slice to original seq length
                contlen = len(cont_toks)
                logits = logits[inplen-contlen:inplen].unsqueeze(0)  # [1, seq, vocab]
284

285
                # Check if per-token argmax is exactly equal to continuation
286
                greedy_tokens = logits.argmax(dim=-1)
287
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(0)  # [1, seq]
288
289
                max_equal = (greedy_tokens == cont_toks).all()

290
291
292
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(-1)  # [1, seq]
293

294
                # Answer: (log prob, is-exact-match)
295
296
297
298
299
300
301
302
303
304
305
306
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

        return reord.get_original(res)
    
    def greedy_until(self, requests):
        # TODO: implement fully general `until` that handles untils that are 
307
        #       multiple tokens or that span multiple tokens correctly
308
309
310
311
312
313

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
314
            return len(toks), x[0]
315
316
317
318
        
        reord = utils.Reorderer(requests, _collate)

        for context, until in tqdm(reord.get_reordered()):
319
320
            if isinstance(until, str):
                until = [until]
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

            primary_until, = self.tok_encode(until[0])
            
            context_enc = torch.tensor([self.tok_encode(context)[self.max_gen_toks - self.max_length:]]).to(self.device)

            cont = self._model_generate(context_enc, context_enc.shape[1] + self.max_gen_toks, primary_until)

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1]:])

            for term in until:
                s = s.split(term)[0]
            
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
            
            res.append(s)
        
        return reord.get_original(res)
Leo Gao's avatar
Leo Gao committed
339

Leo Gao's avatar
Leo Gao committed
340

341
class Task(abc.ABC):
&'s avatar
&amp; committed
342
343
344
345
346
347
348
349
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
350
351
352
353
354
355
356
357
358
359

    # The name of the `Task` benchmark as denoted in the HuggingFace `datasets`
    # API or a path to a custom `datasets` loading script.
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

    def __init__(self, **kwargs):
        self.download(**kwargs)
360
        self._training_docs = None
361
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
362

Jonathan Tow's avatar
Jonathan Tow committed
363
364
365
366
367
368
369
370
371
372
373
374
    def download(self, **load_dataset_kwargs):
        """ Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param load_dataset_kwargs: Extra kwargs to pass to `datasets.load_dataset`
            if needed.
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **load_dataset_kwargs
        )
sdtblck's avatar
sdtblck committed
375

376
    @abstractmethod
377
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
378
        """Whether the task has a training set"""
379
        pass
380

381
    @abstractmethod
382
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
383
384
385
        """Whether the task has a validation set"""
        pass

386
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
387
388
    def has_test_docs(self):
        """Whether the task has a test set"""
389
390
        pass

Leo Gao's avatar
Leo Gao committed
391
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
392
393
394
395
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
396
        return []
397

Leo Gao's avatar
Leo Gao committed
398
    def validation_docs(self):
399
400
401
402
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
403
        return []
404

Leo Gao's avatar
Leo Gao committed
405
    def test_docs(self):
406
407
408
409
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
410
        return []
Leo Gao's avatar
Leo Gao committed
411

412
    def fewshot_examples(self, k, rnd):
413
414
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
415

Leo Gao's avatar
Leo Gao committed
416
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
417

418
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
419
420
421
    def doc_to_text(self, doc):
        pass

422
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
423
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
424
        pass
Leo Gao's avatar
Leo Gao committed
425

426
    @abstractmethod
427
    def construct_requests(self, doc, ctx):
Leo Gao's avatar
Leo Gao committed
428
429
430
        """ Uses RequestFactory to construct Requests and returns an iterable of 
        Requests which will be sent to the LM.

431
432
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
433
        :param ctx: str
434
435
436
            The context string, generated by fewshot_context. This includes the natural 
            language description, as well as the few shot examples, and the question
            part of the document for `doc`. 
Leo Gao's avatar
Leo Gao committed
437
        """
Leo Gao's avatar
Leo Gao committed
438
        pass
439

440
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
441
    def process_results(self, doc, results):
Leo Gao's avatar
Update  
Leo Gao committed
442
        """Take a single document and the LM results and evaluates, returning a 
443
444
        dict where keys are the names of submetrics and values are the values of 
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
445
446
447
448
449

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
450
        """
Leo Gao's avatar
Leo Gao committed
451
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
452

453
    @abstractmethod
454
455
    def aggregation(self):
        """
&'s avatar
&amp; committed
456
        :returns: {str: [metric_score] -> float}
457
            A dictionary where keys are the names of submetrics and values are 
&'s avatar
&amp; committed
458
            functions that aggregate a list of metric scores
459
460
461
        """
        pass

462
    @abstractmethod
463
464
465
466
467
468
469
470
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are 
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
471
    def fewshot_description(self):
472
473
        import warnings
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
474
            "`fewshot_description` will be removed in futures versions. Pass "
475
476
            "any custom descriptions to the `evaluate` function instead.",
            DeprecationWarning)
Jason Phang's avatar
checkin  
Jason Phang committed
477
478
        return ""

479
    @utils.positional_deprecated
480
481
482
483
484
485
486
487
488
489
490
491
    def fewshot_context(self, doc, num_fewshot, provide_description=None, rnd=None, description=None):
        """ Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
492
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
493
494
495
496
497
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
498
        assert rnd is not None, "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
499
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
500
            "The `provide_description` arg will be removed in future versions. To prepend "
501
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
502
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
503
        )
504
505
506
507
        if provide_description is not None:
            # nudge people to not specify it at all
            print("WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict")

508
        description = description + "\n\n" if description else ""
509

510
511
        if num_fewshot == 0:
            labeled_examples = ""
512
        else:
513
514
515
516
517
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
518
519
520
                    self._fewshot_docs = list(
                        self.validation_docs() if self.has_validation_docs() else self.test_docs()
                    )
521

522
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
523

524
525
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
526

527
            labeled_examples = "\n\n".join(
528
                [self.doc_to_text(doc) + self.doc_to_target(doc) for doc in fewshotex]
529
            ) + "\n\n"
Leo Gao's avatar
Update  
Leo Gao committed
530

531
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
532
533
534
        return description + labeled_examples + example


535
class MultipleChoiceTask(Task, abc.ABC):
Leo Gao's avatar
Leo Gao committed
536
537
538
    def doc_to_target(self, doc):
        return " " + doc['choices'][doc['gold']]

Leo Gao's avatar
Leo Gao committed
539
540
541
542
543
544
545
546
547
548
549
    def construct_requests(self, doc, ctx):
        lls = [
            rf.loglikelihood(ctx, " {}".format(choice))[0]
            for choice in doc['choices']
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Leo Gao's avatar
Leo Gao committed
550
        acc = 1. if np.argmax(results) == gold else 0.
551
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Leo Gao's avatar
Leo Gao committed
552
        acc_norm = 1. if np.argmax(results / completion_len) == gold else 0.
Leo Gao's avatar
Leo Gao committed
553
554

        return {
Leo Gao's avatar
Leo Gao committed
555
556
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
557
558
559
560
        }
    
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
561
562
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
563
564
565
566
        }
    
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
567
568
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
569
570
571
        }


Jason Phang's avatar
Jason Phang committed
572
573
574
575
576
577
578
579
580
class PerplexityTask(Task, abc.ABC):

    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

581
    def fewshot_context(self, doc, num_fewshot, provide_description=None, rnd=None, description=None):
Jonathan Tow's avatar
Jonathan Tow committed
582
583
        assert num_fewshot == 0, "The number of fewshot examples must be 0 for perplexity tasks."
        assert rnd is not None, "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
584
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
585
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
586
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
587
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
588
        )
589
590
591
592
        if provide_description is not None:
            # nudge people to not specify it at all
            print("WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict")

Jason Phang's avatar
Jason Phang committed
593
594
595
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
596
597
598
599
600
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
601
602

    def doc_to_text(self, doc):
603
        return ""
Jason Phang's avatar
Jason Phang committed
604
605

    def doc_to_target(self, doc):
606
        return doc
Jason Phang's avatar
Jason Phang committed
607
608
609

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
610
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
611
612
613
614
        return req

    def process_results(self, doc, results):
        loglikelihood, = results
Leo Gao's avatar
Leo Gao committed
615
        words = self.count_words(doc)
616
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
617
        return {
Leo Gao's avatar
Leo Gao committed
618
            "word_perplexity": (loglikelihood, words),
619
            "byte_perplexity": (loglikelihood, bytes_),
620
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
621
622
623
624
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
625
626
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
627
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
628
629
        }

630
631
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
632
        return len(doc.encode("utf-8"))
633
634
635

    @classmethod
    def count_words(cls, doc):
Leo Gao's avatar
Leo Gao committed
636
        """ Downstream tasks with custom word boundaries should override this! """
Leo Gao's avatar
Leo Gao committed
637
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
638

Jason Phang's avatar
Jason Phang committed
639

Leo Gao's avatar
Leo Gao committed
640
641
642
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
    return hashlib.sha256(dat.encode('utf-8')).hexdigest()
Leo Gao's avatar
Leo Gao committed
643
644


Leo Gao's avatar
Leo Gao committed
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
class CacheHook:
    def __init__(self, cachinglm):
        if cachinglm is None: 
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
    
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
660
661
class CachingLM:
    def __init__(self, lm, cache_db):
662
663
664
665
666
667
668
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
669
670
        self.lm = lm
        self.cache_db = cache_db
671
672
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
673
674
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
675
676
677
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
678
679
680
681
682
683
684
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
            
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
685
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
686
687
688
689
690
691
692
693
694
695
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
            
696
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
697
698
699
700
701
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
702
703
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
704
705
706
707

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
708
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
709
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
710
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
711
712
713

            return res
        return fn
Leo Gao's avatar
Leo Gao committed
714
715
716
    
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
717

Jason Phang's avatar
Jason Phang committed
718

719
720
721
722
723
724
725
REQUEST_RETURN_LENGTHS = {
    'loglikelihood': 2,
    'greedy_until': None,
    'loglikelihood_rolling': None,
}


726
class Request:
Leo Gao's avatar
Leo Gao committed
727
728
729
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
            raise NotImplementedError('The request type {} is not implemented!'.format(request_type))
Leo Gao's avatar
Leo Gao committed
730

Leo Gao's avatar
Leo Gao committed
731
        self.request_type = request_type
732
733
734
735
        self.args = args
        self.index = index
    
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
736
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Leo Gao's avatar
Leo Gao committed
737
            raise IndexError('This request type does not return multiple arguments!')
Leo Gao's avatar
Leo Gao committed
738
739
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
740
741
    
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
742
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Leo Gao's avatar
Leo Gao committed
743
            raise IndexError('This request type does not return multiple arguments!')
Leo Gao's avatar
Leo Gao committed
744
        return Request(self.request_type, self.args, i)
Leo Gao's avatar
Leo Gao committed
745
746
    
    def __eq__(self, other):
Leo Gao's avatar
Leo Gao committed
747
        return self.request_type == other.request_type and self.args == other.args and self.index == other.index
Leo Gao's avatar
Leo Gao committed
748

Leo Gao's avatar
Leo Gao committed
749
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
750
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
751

Jason Phang's avatar
Jason Phang committed
752

Leo Gao's avatar
Leo Gao committed
753
754
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
755
756
        def fn(*args):
            return Request(attr, args)
Leo Gao's avatar
Leo Gao committed
757
758
759
760
        return fn


rf = RequestFactory()