Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
42c6b7df
Commit
42c6b7df
authored
Apr 11, 2023
by
Benjamin Fattori
Browse files
additional external call to empty_cache + gc collect
parent
99304fe5
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
8 deletions
+11
-8
lm_eval/base.py
lm_eval/base.py
+11
-8
No files found.
lm_eval/base.py
View file @
42c6b7df
...
...
@@ -12,7 +12,7 @@ from tqdm import tqdm
import
torch
import
torch.nn.functional
as
F
from
accelerate
import
find_executable_batch_size
import
gc
from
lm_eval.metrics
import
mean
,
weighted_perplexity
,
weighted_mean
,
bits_per_byte
from
lm_eval
import
utils
...
...
@@ -197,12 +197,14 @@ class BaseLM(LM):
@
find_executable_batch_size
(
starting_batch_size
=
512
)
# if OOM, then halves batch_size and tries again
def
forward_batch
(
batch_size
):
test_batch
=
torch
.
ones
((
batch_size
,
self
.
max_length
),
device
=
self
.
device
).
long
()
F
.
log_softmax
(
self
.
_model_call
(
test_batch
),
dim
=
-
1
)
out
=
F
.
log_softmax
(
self
.
_model_call
(
test_batch
),
dim
=
-
1
)
return
batch_size
batch_size
=
forward_batch
()
print
(
f
"Determined Largest batch size:
{
batch_size
}
"
)
adaptive_batch_size
=
batch_size
torch
.
cuda
.
empty_cache
()
gc
.
collect
()
loglikelihoods
=
[]
for
(
string
,)
in
tqdm
(
requests
):
...
...
@@ -254,26 +256,27 @@ class BaseLM(LM):
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
_
,
context_enc
,
continuation_enc
=
re_ord
.
get_reordered
()[
0
]
_
,
context_enc
,
continuation_enc
=
re_ord
.
get_reordered
()[
0
]
max_context
=
len
((
context_enc
+
continuation_enc
)[
-
(
self
.
max_length
+
1
)
:][:
-
1
])
if
(
self
.
batch_size
==
'auto'
):
if
override_bs
is
None
:
print
(
'Passed argument batch_size = auto. Detecting largest batch size'
)
@
find_executable_batch_size
(
starting_batch_size
=
512
)
# if OOM, then halves batch_size and tries again
def
forward_batch
(
batch_size
):
test_batch
=
torch
.
ones
((
batch_size
,
max_context
),
device
=
self
.
device
).
long
()
F
.
log_softmax
(
self
.
_model_call
(
test_batch
),
dim
=
-
1
)
test_batch
=
test_batch
=
torch
.
ones
((
batch_size
,
max_context
),
device
=
self
.
device
).
long
()
out
=
F
.
log_softmax
(
self
.
_model_call
(
test_batch
),
dim
=
-
1
)
return
batch_size
batch_size
=
forward_batch
()
print
(
f
"Determined largest batch size:
{
batch_size
}
"
)
adaptive_batch_size
=
batch_size
torch
.
cuda
.
empty_cache
()
gc
.
collect
()
else
:
adaptive_batch_size
=
override_bs
for
chunk
in
utils
.
chunks
(
tqdm
(
re_ord
.
get_reordered
(),
disable
=
disable_tqdm
),
self
.
batch_size
if
self
.
batch_size
!=
"auto"
else
adaptive_batch_size
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment