base.py 33.2 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
import abc
2
from typing import Iterable
thefazzer's avatar
thefazzer committed
3
import numpy as np
4
import random
Leo Gao's avatar
Leo Gao committed
5
import re
6
7
8
import os
import json
import hashlib
Jonathan Tow's avatar
Jonathan Tow committed
9
import datasets
10
from sqlitedict import SqliteDict
11
from tqdm import tqdm
12
import torch
Leo Gao's avatar
Leo Gao committed
13
import torch.nn.functional as F
14
from accelerate import find_executable_batch_size
&'s avatar
& committed
15

16
from lm_eval.metrics import mean, weighted_perplexity, weighted_mean, bits_per_byte
17
from lm_eval import utils
18
from abc import abstractmethod
Jason Phang's avatar
gpt3  
Jason Phang committed
19

Jason Phang's avatar
Jason Phang committed
20

Leo Gao's avatar
Leo Gao committed
21
class LM(abc.ABC):
Leo Gao's avatar
Leo Gao committed
22
23
24
    def __init__(self):
        self.cache_hook = CacheHook(None)

25
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
26
    def loglikelihood(self, requests):
Leo Gao's avatar
Leo Gao committed
27
        """Compute log-likelihood of generating a continuation from a context.
Fabrizio Milo's avatar
Fabrizio Milo committed
28
        Downstream tasks should attempt to use loglikelihood instead of other
Leo Gao's avatar
Leo Gao committed
29
        LM calls whenever possible.
Jason Phang's avatar
gpt3  
Jason Phang committed
30

Leo Gao's avatar
Leo Gao committed
31
32
33
        :param requests: list
            A list of pairs (context, continuation)
            context: str
Fabrizio Milo's avatar
Fabrizio Milo committed
34
                Context string. Implementations of LM must be able to handle an
Leo Gao's avatar
Leo Gao committed
35
                empty context string.
Leo Gao's avatar
Leo Gao committed
36
            continuation: str
Fabrizio Milo's avatar
Fabrizio Milo committed
37
38
                The continuation over which log likelihood will be calculated. If
                there is a word boundary, the space should be in the continuation.
Leo Gao's avatar
Leo Gao committed
39
40
41
42
                For example, context="hello" continuation=" world" is correct.
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
Jason Phang's avatar
Jason Phang committed
43
                The log probability of `continuation`
Leo Gao's avatar
Leo Gao committed
44
            isgreedy:
Jason Phang's avatar
Jason Phang committed
45
46
47
48
                Whether `continuation` would be generated by greedy sampling from `context`
        """
        pass

49
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
50
    def loglikelihood_rolling(self, requests):
Jason Phang's avatar
Jason Phang committed
51
52
53
54
        """Compute full log-likelihood of a string, with no truncation, for perplexity computation
        - We will use the full max context length of the model.
        - For inputs that exceed the max context length, we divide the tokenized string into chunks of up to
        the max context length.
Fabrizio Milo's avatar
Fabrizio Milo committed
55
        - IMPORTANT: Each document's loglikelihood/perplexity is computed *separately*, unlike other implementations
Jason Phang's avatar
Jason Phang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
          which may simply concatenate multiple documents together.
        - IMPORTANT: We maximize the amount of context for each prediction. Specifically, for inputs that we break into
          multiple chunks, the last input will still a full-sized context.
          Example:
            Input tokens: [ 0 1 2 3 4 5 6 7 8 9 ]
            Prefix: EOT
            Max context length: 4
            Resulting input/prediction pairs:

                INPUT:  EOT   0   1   2
                PRED:     0   1   2   3

                INPUT:    3   4   5   6
                PRED:     4   5   6   7

                INPUT:    5   6   7   8
                PRED:             8   9

          Observe that:
            1. Each token is predicted exactly once
            2. For the last pair, we provide the full context, but only score the last two tokens

        :param requests: list
            A list of strings
            string: str
                String for which we are computing per-toke  loglikelihood
        :return: list
            A list of pairs (logprob, isgreedy)
            logprob: float
                The log probability of `continuation`
            isgreedy:
                Whether `continuation` would be generated by greedy sampling from `context`
Leo Gao's avatar
Leo Gao committed
88
89
90
        """
        pass

&'s avatar
& committed
91
    # TODO: Add an optional max length
92
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
93
    def greedy_until(self, requests):
Leo Gao's avatar
Leo Gao committed
94
95
96
97
98
99
        """Generate greedily until a stopping sequence

        :param requests: list
            A list of pairs (context, until)
            context: str
                Context string
Leo Gao's avatar
Leo Gao committed
100
            until: [str]
Fabrizio Milo's avatar
Fabrizio Milo committed
101
                The string sequences to generate until. These string sequences
Leo Gao's avatar
Leo Gao committed
102
                may each span across multiple tokens, or may be part of one token.
Leo Gao's avatar
Leo Gao committed
103
104
105
106
        :return: list
            A list of strings continuation
            continuation: str
                The generated continuation.
Jason Phang's avatar
gpt3  
Jason Phang committed
107
        """
Leo Gao's avatar
Leo Gao committed
108
109
        pass

Jason Phang's avatar
gpt3  
Jason Phang committed
110
    @classmethod
111
112
    def create_from_arg_string(cls, arg_string, additional_config=None):
        additional_config = {} if additional_config is None else additional_config
113
114
115
        args = utils.simple_parse_args_string(arg_string)
        args2 = {k: v for k, v in additional_config.items() if v is not None}
        return cls(**args, **args2)
Jason Phang's avatar
gpt3  
Jason Phang committed
116

Leo Gao's avatar
Leo Gao committed
117
118
119
    def set_cache_hook(self, cache_hook):
        self.cache_hook = cache_hook

Leo Gao's avatar
Leo Gao committed
120

121
class BaseLM(LM):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    @property
    @abstractmethod
    def eot_token_id(self):
        pass

    @property
    @abstractmethod
    def max_length(self):
        pass

    @property
    @abstractmethod
    def max_gen_toks(self):
        pass

    @property
    @abstractmethod
    def batch_size(self):
        pass

    @property
    @abstractmethod
    def device(self):
        pass

147
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
148
149
150
    def tok_encode(self, string: str):
        pass

151
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
152
153
    def tok_decode(self, tokens: Iterable[int]):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
154

155
    @abstractmethod
Fabrizio Milo's avatar
Fabrizio Milo committed
156
157
    def _model_generate(self, context, max_length, eos_token_id):
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
158

159
160
    @abstractmethod
    def _model_call(self, inps):
Jason Phang's avatar
gpt3  
Jason Phang committed
161
        """
162
163
        inps: a torch tensor of shape [batch, sequence]
        the size of sequence may vary from call to call
Jason Phang's avatar
gpt3  
Jason Phang committed
164

165
        returns: a torch tensor of shape [batch, sequence, vocab] with the
166
        logits returned from the model
167
168
        """
        pass
169

Leo Gao's avatar
Leo Gao committed
170
    # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length.
171
172
    # TODO: enforce this somehow

gakada's avatar
gakada committed
173
    def _encode_pair(self, context, continuation):
174
175
176
177
        n_spaces = len(context) - len(context.rstrip())
        if n_spaces > 0:
            continuation = context[-n_spaces:] + continuation
            context = context[:-n_spaces]
gakada's avatar
gakada committed
178
179
180
        whole_enc = self.tok_encode(context + continuation)
        context_enc = self.tok_encode(context)
        context_enc_len = len(context_enc)
181
        continuation_enc = whole_enc[context_enc_len:]
gakada's avatar
gakada committed
182
183
        return context_enc, continuation_enc

184
185
186
187
188
    def loglikelihood(self, requests):
        new_reqs = []
        for context, continuation in requests:
            if context == "":
                # end of text as context
gakada's avatar
gakada committed
189
                context_enc, continuation_enc = [self.eot_token_id], self.tok_encode(continuation)
190
            else:
gakada's avatar
gakada committed
191
                context_enc, continuation_enc = self._encode_pair(context, continuation)
192
193
194
195
196
197
198

            new_reqs.append(((context, continuation), context_enc, continuation_enc))

        return self._loglikelihood_tokens(new_reqs)

    def loglikelihood_rolling(self, requests):
        # TODO: Implement caching once we've confirmed the perplexity implementation
199

200
201
        # automatic batch size detection for vectorization
        adaptive_batch_size = None
202
        if self.batch_size == "auto":
203
            # using rolling window with maximum context
204
205
206
207
208
            print("Passed argument batch_size = auto. Detecting largest batch size")

            @find_executable_batch_size(
                starting_batch_size=512
            )  # if OOM, then halves batch_size and tries again
209
            def forward_batch(batch_size):
210
211
212
213
214
                test_batch = torch.ones(
                    (batch_size, self.max_length), device=self.device
                ).long()
                for _ in range(5):
                    _ = F.log_softmax(self._model_call(test_batch), dim=-1).cpu()
215
                return batch_size
216
217

            batch_size = forward_batch()
218
219
            print(f"Determined Largest batch size: {batch_size}")
            adaptive_batch_size = batch_size
220
221

        loglikelihoods = []
Fabrizio Milo's avatar
Fabrizio Milo committed
222
223
224
225
226
227
228
229
230
231
232
233
        for (string,) in tqdm(requests):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.eot_token_id,
                        max_seq_len=self.max_length,
                        context_len=1,
                    ),
                )
            )
234
235
236

            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

237
238
            # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for
            # that
Fabrizio Milo's avatar
Fabrizio Milo committed
239
            string_nll = self._loglikelihood_tokens(
240
241
242
                rolling_token_windows,
                disable_tqdm=True,
                override_bs=adaptive_batch_size,
Fabrizio Milo's avatar
Fabrizio Milo committed
243
244
            )

245
246
            # discard is_greedy
            string_nll = [x[0] for x in string_nll]
Fabrizio Milo's avatar
Fabrizio Milo committed
247

248
249
250
251
252
            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

        return loglikelihoods

253
    def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs=None):
254
255
256
257
258
259
        # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
        res = []

        def _collate(x):
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
260
261
262
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
263
264
265
            # - any OOMs will happen right away rather than near the end

            toks = x[1] + x[2]
266
            return -len(toks), tuple(toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
267

Fabrizio Milo's avatar
Fabrizio Milo committed
268
        re_ord = utils.Reorderer(requests, _collate)
269
270
271

        # automatic (variable) batch size detection for vectorization
        # pull longest context sample from request
272
273
274
275
        if len(re_ord.get_reordered()) > 0:
            _, context_enc, continuation_enc = re_ord.get_reordered()[0]
            max_context = len((context_enc + continuation_enc)[-(self.max_length + 1) :][:-1])
            if (self.batch_size == 'auto'):
gakada's avatar
gakada committed
276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
                if override_bs is None:
                    print('Passed argument batch_size = auto. Detecting largest batch size')
                    @find_executable_batch_size(starting_batch_size=512) # if OOM, then halves batch_size and tries again
                    def forward_batch(batch_size):
                        test_batch = torch.ones((batch_size, max_context), device=self.device).long()
                        for _ in range(5):
                            out = F.log_softmax(self._model_call(test_batch), dim = -1).cpu()
                        return batch_size

                    batch_size = forward_batch()
                    print(f"Determined largest batch size: {batch_size}")
                    adaptive_batch_size = batch_size

                else:
                    adaptive_batch_size = override_bs
        else:
            adaptive_batch_size = 0 if override_bs is None else override_bs
294

Fabrizio Milo's avatar
Fabrizio Milo committed
295
        for chunk in utils.chunks(
296
297
            tqdm(re_ord.get_reordered(), disable=disable_tqdm),
            self.batch_size if self.batch_size != "auto" else adaptive_batch_size,
Fabrizio Milo's avatar
Fabrizio Milo committed
298
        ):
299
            inps = []
300
            cont_toks_list = []
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            inplens = []

            padding_length = None

            # because vectorizing is annoying, we first convert each (context, continuation) pair to padded
            # tensors, then we pack them together into a batch, call the model, and then pick it all apart
            # again because vectorizing is annoying

            for _, context_enc, continuation_enc in chunk:
                # sanity check
                assert len(context_enc) > 0
                assert len(continuation_enc) > 0
                assert len(continuation_enc) <= self.max_length

                # how this all works:
                #          CTX      CONT
317
                # inp    0 1 2 3|4 5 6 7 8 9   <- last token is deleted by inp[:, :-1]
318
                # gpt2    \               \
319
320
                # logits   1 2 3|4 5 6 7 8 9   <- the ctx half gets tossed out by the
                # cont_toks      4 5 6 7 8 9      [:, -len(continuation_enc):, :self.vocab_size] slice
321
322
323

                # when too long to fit in context, truncate from the left
                inp = torch.tensor(
Fabrizio Milo's avatar
Fabrizio Milo committed
324
325
                    (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
                    dtype=torch.long,
326
                ).to(self.device)
Fabrizio Milo's avatar
Fabrizio Milo committed
327
                (inplen,) = inp.shape
328
329
330
331

                cont = continuation_enc

                # since in _collate we make sure length is descending, the longest is always the first one.
Fabrizio Milo's avatar
Fabrizio Milo committed
332
333
334
                padding_length = (
                    padding_length if padding_length is not None else inplen
                )
335

336
                # pad length from seq to padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
337
338
339
340
341
342
343
344
345
                inp = torch.cat(
                    [
                        inp,  # [seq]
                        torch.zeros(padding_length - inplen, dtype=torch.long).to(
                            inp.device
                        ),  # [padding_length - seq]
                    ],
                    dim=0,
                )
346

347
348
                inps.append(inp.unsqueeze(0))  # [1, padding_length]
                cont_toks_list.append(cont)
349
350
                inplens.append(inplen)

351
            batched_inps = torch.cat(inps, dim=0)  # [batch, padding_length
Fabrizio Milo's avatar
Fabrizio Milo committed
352
353
354
            multi_logits = F.log_softmax(
                self._model_call(batched_inps), dim=-1
            ).cpu()  # [batch, padding_length, vocab]
355

Fabrizio Milo's avatar
Fabrizio Milo committed
356
357
358
            for (cache_key, _, _), logits, inp, inplen, cont_toks in zip(
                chunk, multi_logits, inps, inplens, cont_toks_list
            ):
359

360
361
                # Slice to original seq length
                contlen = len(cont_toks)
Fabrizio Milo's avatar
Fabrizio Milo committed
362
363
364
                logits = logits[inplen - contlen : inplen].unsqueeze(
                    0
                )  # [1, seq, vocab]
365

366
                # Check if per-token argmax is exactly equal to continuation
367
                greedy_tokens = logits.argmax(dim=-1)
Fabrizio Milo's avatar
Fabrizio Milo committed
368
369
370
                cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze(
                    0
                )  # [1, seq]
371
372
                max_equal = (greedy_tokens == cont_toks).all()

373
374
                # Obtain log-probs at the corresponding continuation token indices
                # last_token_slice = logits[:, -1, :].squeeze(0).tolist()
Fabrizio Milo's avatar
Fabrizio Milo committed
375
376
377
                logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
                    -1
                )  # [1, seq]
378

379
                # Answer: (log prob, is-exact-match)
380
381
382
383
384
385
386
387
                answer = (float(logits.sum()), bool(max_equal))

                # partial caching
                if cache_key is not None:
                    self.cache_hook.add_partial("loglikelihood", cache_key, answer)

                res.append(answer)

Fabrizio Milo's avatar
Fabrizio Milo committed
388
        return re_ord.get_original(res)
Fabrizio Milo's avatar
Fabrizio Milo committed
389

390
    def greedy_until(self, requests):
Fabrizio Milo's avatar
Fabrizio Milo committed
391
        # TODO: implement fully general `until` that handles until that are
392
        #       multiple tokens or that span multiple tokens correctly
393
394
395
396
397
398

        # TODO: extract to TokenizedLM?
        res = []

        def _collate(x):
            toks = self.tok_encode(x[0])
399
            return len(toks), x[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
400

Fabrizio Milo's avatar
Fabrizio Milo committed
401
        re_ord = utils.Reorderer(requests, _collate)
402

403
        for context, request_args in tqdm(re_ord.get_reordered()):
404
            until = request_args["until"]
405
406
            if isinstance(until, str):
                until = [until]
407

408
409
410
411
            if until:
                (primary_until,) = self.tok_encode(until[0])
            else:
                primary_until = None
412

Fabrizio Milo's avatar
Fabrizio Milo committed
413
414
415
            context_enc = torch.tensor(
                [self.tok_encode(context)[self.max_gen_toks - self.max_length :]]
            ).to(self.device)
416

417
            max_gen_tokens = min(
418
                self.max_gen_toks, request_args.get("max_length", self.max_gen_toks)
419
            )
Fabrizio Milo's avatar
Fabrizio Milo committed
420
            cont = self._model_generate(
421
                context_enc, context_enc.shape[1] + max_gen_tokens, primary_until
Fabrizio Milo's avatar
Fabrizio Milo committed
422
423
424
            )

            s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :])
425
426
427

            for term in until:
                s = s.split(term)[0]
Fabrizio Milo's avatar
Fabrizio Milo committed
428

429
430
            # partial caching
            self.cache_hook.add_partial("greedy_until", (context, until), s)
Fabrizio Milo's avatar
Fabrizio Milo committed
431

432
            res.append(s)
Fabrizio Milo's avatar
Fabrizio Milo committed
433

Fabrizio Milo's avatar
Fabrizio Milo committed
434
        return re_ord.get_original(res)
Leo Gao's avatar
Leo Gao committed
435

Leo Gao's avatar
Leo Gao committed
436

437
class Task(abc.ABC):
&'s avatar
&amp; committed
438
439
440
441
442
443
444
445
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """
Jonathan Tow's avatar
Jonathan Tow committed
446

Jon Tow's avatar
Jon Tow committed
447
448
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Jonathan Tow's avatar
Jonathan Tow committed
449
450
451
452
453
    DATASET_PATH: str = None

    # The name of a subset within `DATASET_PATH`.
    DATASET_NAME: str = None

Jon Tow's avatar
Jon Tow committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    def __init__(self, data_dir=None, cache_dir=None, download_mode=None):
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
478
        self._training_docs = None
479
        self._fewshot_docs = None
sdtblck's avatar
sdtblck committed
480

Jon Tow's avatar
Jon Tow committed
481
    def download(self, data_dir=None, cache_dir=None, download_mode=None):
Fabrizio Milo's avatar
Fabrizio Milo committed
482
        """Downloads and returns the task dataset.
Jonathan Tow's avatar
Jonathan Tow committed
483
484
        Override this method to download the dataset from a custom API.

Jon Tow's avatar
Jon Tow committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
Jonathan Tow's avatar
Jonathan Tow committed
505
506
507
508
        """
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
Jon Tow's avatar
Jon Tow committed
509
510
            data_dir=data_dir,
            cache_dir=cache_dir,
Fabrizio Milo's avatar
Fabrizio Milo committed
511
            download_mode=download_mode,
Jonathan Tow's avatar
Jonathan Tow committed
512
        )
sdtblck's avatar
sdtblck committed
513

514
515
516
517
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return False

518
    @abstractmethod
519
    def has_training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
520
        """Whether the task has a training set"""
521
        pass
522

523
    @abstractmethod
524
    def has_validation_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
525
526
527
        """Whether the task has a validation set"""
        pass

528
    @abstractmethod
Jason Phang's avatar
checkin  
Jason Phang committed
529
530
    def has_test_docs(self):
        """Whether the task has a test set"""
531
532
        pass

Leo Gao's avatar
Leo Gao committed
533
    def training_docs(self):
Jason Phang's avatar
checkin  
Jason Phang committed
534
535
536
537
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
538
        return []
539

Leo Gao's avatar
Leo Gao committed
540
    def validation_docs(self):
541
542
543
544
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
545
        return []
546

Leo Gao's avatar
Leo Gao committed
547
    def test_docs(self):
548
549
550
551
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
Leo Gao's avatar
Leo Gao committed
552
        return []
Leo Gao's avatar
Leo Gao committed
553

Jon Tow's avatar
Jon Tow committed
554
555
556
557
    def _process_doc(self, doc):
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
Jon Tow's avatar
Jon Tow committed
558
        E.g. `map(self._process_doc, self.dataset["validation"])`
Jon Tow's avatar
Jon Tow committed
559
560
561
562
563
564

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

565
    def fewshot_examples(self, k, rnd):
566
567
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())
568

Leo Gao's avatar
Leo Gao committed
569
        return rnd.sample(self._training_docs, k)
Leo Gao's avatar
Leo Gao committed
570

571
    def doc_to_decontamination_query(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
572
573
574
575
        print(
            "Override doc_to_decontamination_query with document specific decontamination query."
        )
        assert False
576

577
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
578
579
580
    def doc_to_text(self, doc):
        pass

581
    @abstractmethod
Leo Gao's avatar
Update  
Leo Gao committed
582
    def doc_to_target(self, doc):
Leo Gao's avatar
Leo Gao committed
583
        pass
Leo Gao's avatar
Leo Gao committed
584

585
    @abstractmethod
586
    def construct_requests(self, doc, ctx):
Fabrizio Milo's avatar
Fabrizio Milo committed
587
        """Uses RequestFactory to construct Requests and returns an iterable of
Leo Gao's avatar
Leo Gao committed
588
589
        Requests which will be sent to the LM.

590
591
        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
Leo Gao's avatar
Leo Gao committed
592
        :param ctx: str
Fabrizio Milo's avatar
Fabrizio Milo committed
593
            The context string, generated by fewshot_context. This includes the natural
594
            language description, as well as the few shot examples, and the question
Fabrizio Milo's avatar
Fabrizio Milo committed
595
            part of the document for `doc`.
Leo Gao's avatar
Leo Gao committed
596
        """
Leo Gao's avatar
Leo Gao committed
597
        pass
598

599
    @abstractmethod
Leo Gao's avatar
Leo Gao committed
600
    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
601
602
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
603
        the metric for that one document
Leo Gao's avatar
Leo Gao committed
604
605
606
607
608

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
Jason Phang's avatar
checkin  
Jason Phang committed
609
        """
Leo Gao's avatar
Leo Gao committed
610
        pass
Jason Phang's avatar
gpt3  
Jason Phang committed
611

612
    @abstractmethod
613
614
    def aggregation(self):
        """
&'s avatar
&amp; committed
615
        :returns: {str: [metric_score] -> float}
Fabrizio Milo's avatar
Fabrizio Milo committed
616
            A dictionary where keys are the names of submetrics and values are
&'s avatar
&amp; committed
617
            functions that aggregate a list of metric scores
618
619
620
        """
        pass

621
    @abstractmethod
622
623
624
    def higher_is_better(self):
        """
        :returns: {str: bool}
Fabrizio Milo's avatar
Fabrizio Milo committed
625
            A dictionary where keys are the names of submetrics and values are
626
627
628
629
            whether a higher value of the submetric is better
        """
        pass

Jason Phang's avatar
Jason Phang committed
630
    def fewshot_description(self):
631
        import warnings
Fabrizio Milo's avatar
Fabrizio Milo committed
632

633
        warnings.warn(
Jonathan Tow's avatar
Jonathan Tow committed
634
            "`fewshot_description` will be removed in futures versions. Pass "
635
            "any custom descriptions to the `evaluate` function instead.",
Fabrizio Milo's avatar
Fabrizio Milo committed
636
637
            DeprecationWarning,
        )
Jason Phang's avatar
checkin  
Jason Phang committed
638
639
        return ""

640
    @utils.positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
641
642
643
644
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        """Returns a fewshot context string that is made up of a prepended description
645
646
647
648
649
650
651
652
653
654
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
        :param provide_description: bool
            Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
655
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
656
657
658
659
660
        :param description: str
            The task's description that will be prepended to the fewshot examples.
        :returns: str
            The fewshot context.
        """
Fabrizio Milo's avatar
Fabrizio Milo committed
661
662
663
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`"
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
664
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
665
            "The `provide_description` arg will be removed in future versions. To prepend "
666
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
667
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
668
        )
669
670
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
671
672
673
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
674

675
        description = description + "\n\n" if description else ""
676

677
678
        if num_fewshot == 0:
            labeled_examples = ""
679
        else:
680
681
682
683
684
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
685
                    self._fewshot_docs = list(
Fabrizio Milo's avatar
Fabrizio Milo committed
686
687
688
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
689
                    )
690

691
                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)
692

693
694
                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]
695

Fabrizio Milo's avatar
Fabrizio Milo committed
696
697
698
699
700
701
702
703
704
            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
            )
Leo Gao's avatar
Update  
Leo Gao committed
705

706
        example = self.doc_to_text(doc)
Leo Gao's avatar
Leo Gao committed
707
708
709
        return description + labeled_examples + example


Jon Tow's avatar
Jon Tow committed
710
class MultipleChoiceTask(Task):
Leo Gao's avatar
Leo Gao committed
711
    def doc_to_target(self, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
712
        return " " + doc["choices"][doc["gold"]]
Leo Gao's avatar
Leo Gao committed
713

Leo Gao's avatar
Leo Gao committed
714
715
    def construct_requests(self, doc, ctx):
        lls = [
Fabrizio Milo's avatar
Fabrizio Milo committed
716
            rf.loglikelihood(ctx, " {}".format(choice))[0] for choice in doc["choices"]
Leo Gao's avatar
Leo Gao committed
717
718
719
720
721
722
723
        ]

        return lls

    def process_results(self, doc, results):
        gold = doc["gold"]

Fabrizio Milo's avatar
Fabrizio Milo committed
724
        acc = 1.0 if np.argmax(results) == gold else 0.0
725
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
Fabrizio Milo's avatar
Fabrizio Milo committed
726
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0
Leo Gao's avatar
Leo Gao committed
727
728

        return {
Leo Gao's avatar
Leo Gao committed
729
730
            "acc": acc,
            "acc_norm": acc_norm,
Leo Gao's avatar
Leo Gao committed
731
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
732

Leo Gao's avatar
Leo Gao committed
733
734
    def higher_is_better(self):
        return {
Leo Gao's avatar
Leo Gao committed
735
736
            "acc": True,
            "acc_norm": True,
Leo Gao's avatar
Leo Gao committed
737
        }
Fabrizio Milo's avatar
Fabrizio Milo committed
738

Leo Gao's avatar
Leo Gao committed
739
740
    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
741
742
            "acc": mean,
            "acc_norm": mean,
Leo Gao's avatar
Leo Gao committed
743
744
745
        }


Jason Phang's avatar
Jason Phang committed
746
class PerplexityTask(Task, abc.ABC):
747
748
749
750
    def should_decontaminate(self):
        """Whether this task supports decontamination against model training set."""
        return True

Jason Phang's avatar
Jason Phang committed
751
752
753
754
755
756
757
    def has_training_docs(self):
        return False

    def fewshot_examples(self, k, rnd):
        assert k == 0
        return []

Fabrizio Milo's avatar
Fabrizio Milo committed
758
759
760
761
762
763
764
765
766
    def fewshot_context(
        self, doc, num_fewshot, provide_description=None, rnd=None, description=None
    ):
        assert (
            num_fewshot == 0
        ), "The number of fewshot examples must be 0 for perplexity tasks."
        assert (
            rnd is not None
        ), "A `random.Random` generator argument must be provided to `rnd`."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
767
        assert not provide_description, (
Jonathan Tow's avatar
Jonathan Tow committed
768
            "The `provide_description` arg will be removed in future versions. To prepend "
Jonathan Tow's avatar
Jonathan Tow committed
769
            "a custom description to the context, supply the corresponding string via the "
Jonathan Tow's avatar
Jonathan Tow committed
770
            "`description` arg."
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
771
        )
772
773
        if provide_description is not None:
            # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
774
775
776
            print(
                "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
            )
777

Jason Phang's avatar
Jason Phang committed
778
779
780
        return ""

    def higher_is_better(self):
Leo Gao's avatar
Leo Gao committed
781
782
783
784
785
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }
Jason Phang's avatar
Jason Phang committed
786

787
788
789
    def doc_to_decontamination_query(self, doc):
        return doc

Jason Phang's avatar
Jason Phang committed
790
    def doc_to_text(self, doc):
791
        return ""
Jason Phang's avatar
Jason Phang committed
792
793

    def doc_to_target(self, doc):
794
        return doc
Jason Phang's avatar
Jason Phang committed
795
796
797

    def construct_requests(self, doc, ctx):
        assert not ctx
Leo Gao's avatar
Leo Gao committed
798
        req = rf.loglikelihood_rolling(self.doc_to_target(doc))
Jason Phang's avatar
Jason Phang committed
799
800
801
        return req

    def process_results(self, doc, results):
Fabrizio Milo's avatar
Fabrizio Milo committed
802
        (loglikelihood,) = results
Leo Gao's avatar
Leo Gao committed
803
        words = self.count_words(doc)
804
        bytes_ = self.count_bytes(doc)
Jason Phang's avatar
Jason Phang committed
805
        return {
Leo Gao's avatar
Leo Gao committed
806
            "word_perplexity": (loglikelihood, words),
807
            "byte_perplexity": (loglikelihood, bytes_),
808
            "bits_per_byte": (loglikelihood, bytes_),
Jason Phang's avatar
Jason Phang committed
809
810
811
812
        }

    def aggregation(self):
        return {
Leo Gao's avatar
Leo Gao committed
813
814
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
815
            "bits_per_byte": bits_per_byte,
Jason Phang's avatar
Jason Phang committed
816
817
        }

818
819
    @classmethod
    def count_bytes(cls, doc):
Leo Gao's avatar
Leo Gao committed
820
        return len(doc.encode("utf-8"))
821
822
823

    @classmethod
    def count_words(cls, doc):
Fabrizio Milo's avatar
Fabrizio Milo committed
824
        """Downstream tasks with custom word boundaries should override this!"""
Leo Gao's avatar
Leo Gao committed
825
        return len(re.split(r"\s+", doc))
Leo Gao's avatar
Leo Gao committed
826

Jason Phang's avatar
Jason Phang committed
827

Leo Gao's avatar
Leo Gao committed
828
829
def hash_args(attr, args):
    dat = json.dumps([attr] + list(args))
Fabrizio Milo's avatar
Fabrizio Milo committed
830
    return hashlib.sha256(dat.encode("utf-8")).hexdigest()
Leo Gao's avatar
Leo Gao committed
831
832


Leo Gao's avatar
Leo Gao committed
833
834
class CacheHook:
    def __init__(self, cachinglm):
Fabrizio Milo's avatar
Fabrizio Milo committed
835
        if cachinglm is None:
Leo Gao's avatar
Leo Gao committed
836
837
838
839
            self.dbdict = None
            return

        self.dbdict = cachinglm.dbdict
Fabrizio Milo's avatar
Fabrizio Milo committed
840

Leo Gao's avatar
Leo Gao committed
841
842
843
844
845
846
847
    def add_partial(self, attr, req, res):
        if self.dbdict is None:
            return
        hsh = hash_args(attr, req)
        self.dbdict[hsh] = res


Leo Gao's avatar
Leo Gao committed
848
849
class CachingLM:
    def __init__(self, lm, cache_db):
850
851
852
853
854
855
856
        """LM wrapper that returns cached results if they exist, and uses the underlying LM if not.

        :param lm: LM
            Underlying LM
        :param cache_db: str
            Path to cache db
        """
Leo Gao's avatar
Leo Gao committed
857
858
        self.lm = lm
        self.cache_db = cache_db
859
860
        if os.path.dirname(cache_db):
            os.makedirs(os.path.dirname(cache_db), exist_ok=True)
Leo Gao's avatar
Leo Gao committed
861
862
        self.dbdict = SqliteDict(cache_db, autocommit=True)

Leo Gao's avatar
Leo Gao committed
863
864
865
        # add hook to lm
        lm.set_cache_hook(self.get_cache_hook())

Leo Gao's avatar
Leo Gao committed
866
867
868
869
    def __getattr__(self, attr):
        def fn(requests):
            res = []
            remaining_reqs = []
Fabrizio Milo's avatar
Fabrizio Milo committed
870

Leo Gao's avatar
Leo Gao committed
871
872
            # figure out which ones are cached and which ones are new
            for req in requests:
Leo Gao's avatar
Leo Gao committed
873
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
874
875
876
877
878
879
880
881
882
                if hsh in self.dbdict:
                    ob = self.dbdict[hsh]

                    assert ob is not None

                    res.append(ob)
                else:
                    res.append(None)
                    remaining_reqs.append(req)
Fabrizio Milo's avatar
Fabrizio Milo committed
883

884
            # actually run the LM on the requests that do not have cached results
Leo Gao's avatar
Leo Gao committed
885
886
887
888
889
            rem_res = getattr(self.lm, attr)(remaining_reqs)

            # stick the new ones back into the list and also cache any of the new ones
            resptr = 0
            for req, r in zip(remaining_reqs, rem_res):
890
891
                while res[resptr] is not None:
                    resptr += 1
Leo Gao's avatar
Leo Gao committed
892
893
894
895

                res[resptr] = r

                # caching
Leo Gao's avatar
Leo Gao committed
896
                hsh = hash_args(attr, req)
Leo Gao's avatar
Leo Gao committed
897
                self.dbdict[hsh] = r
Leo Gao's avatar
Leo Gao committed
898
            self.dbdict.commit()
Leo Gao's avatar
Leo Gao committed
899
900

            return res
Fabrizio Milo's avatar
Fabrizio Milo committed
901

Leo Gao's avatar
Leo Gao committed
902
        return fn
Fabrizio Milo's avatar
Fabrizio Milo committed
903

Leo Gao's avatar
Leo Gao committed
904
905
    def get_cache_hook(self):
        return CacheHook(self)
Leo Gao's avatar
Leo Gao committed
906

Jason Phang's avatar
Jason Phang committed
907

908
REQUEST_RETURN_LENGTHS = {
Fabrizio Milo's avatar
Fabrizio Milo committed
909
910
911
    "loglikelihood": 2,
    "greedy_until": None,
    "loglikelihood_rolling": None,
912
913
914
}


915
class Request:
Leo Gao's avatar
Leo Gao committed
916
917
    def __init__(self, request_type, args, index=None):
        if request_type not in REQUEST_RETURN_LENGTHS.keys():
Fabrizio Milo's avatar
Fabrizio Milo committed
918
919
920
            raise NotImplementedError(
                "The request type {} is not implemented!".format(request_type)
            )
Leo Gao's avatar
Leo Gao committed
921

Leo Gao's avatar
Leo Gao committed
922
        self.request_type = request_type
923
924
        self.args = args
        self.index = index
Fabrizio Milo's avatar
Fabrizio Milo committed
925

926
    def __iter__(self):
Leo Gao's avatar
Leo Gao committed
927
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
928
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
929
930
        for i in range(REQUEST_RETURN_LENGTHS[self.request_type]):
            yield Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
931

932
    def __getitem__(self, i):
Leo Gao's avatar
Leo Gao committed
933
        if REQUEST_RETURN_LENGTHS[self.request_type] is None:
Fabrizio Milo's avatar
Fabrizio Milo committed
934
            raise IndexError("This request type does not return multiple arguments!")
Leo Gao's avatar
Leo Gao committed
935
        return Request(self.request_type, self.args, i)
Fabrizio Milo's avatar
Fabrizio Milo committed
936

Leo Gao's avatar
Leo Gao committed
937
    def __eq__(self, other):
Fabrizio Milo's avatar
Fabrizio Milo committed
938
939
940
941
942
        return (
            self.request_type == other.request_type
            and self.args == other.args
            and self.index == other.index
        )
Leo Gao's avatar
Leo Gao committed
943

Leo Gao's avatar
Leo Gao committed
944
    def __repr__(self):
Leo Gao's avatar
Leo Gao committed
945
        return f"Req_{self.request_type}{self.args}[{self.index}]\n"
946

Jason Phang's avatar
Jason Phang committed
947

Leo Gao's avatar
Leo Gao committed
948
949
class RequestFactory:
    def __getattr__(self, attr):
Leo Gao's avatar
Update  
Leo Gao committed
950
951
        def fn(*args):
            return Request(attr, args)
Fabrizio Milo's avatar
Fabrizio Milo committed
952

Leo Gao's avatar
Leo Gao committed
953
954
955
956
        return fn


rf = RequestFactory()