Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
lm-evaluation-harness
Commits
d5720d5f
"test/vscode:/vscode.git/clone" did not exist on "fcfd6635b0e62947b982290ca9b576c44fa6a291"
Commit
d5720d5f
authored
Mar 09, 2023
by
Benjamin Fattori
Browse files
single GPU automatic batching logic
parent
2e522e2c
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
36 additions
and
13 deletions
+36
-13
lm_eval/base.py
lm_eval/base.py
+21
-2
lm_eval/models/gpt2.py
lm_eval/models/gpt2.py
+7
-8
lm_eval/models/huggingface.py
lm_eval/models/huggingface.py
+7
-2
main.py
main.py
+1
-1
No files found.
lm_eval/base.py
View file @
d5720d5f
...
...
@@ -11,6 +11,8 @@ from sqlitedict import SqliteDict
from
tqdm
import
tqdm
import
torch
import
torch.nn.functional
as
F
from
accelerate
import
find_executable_batch_size
from
lm_eval.metrics
import
mean
,
weighted_perplexity
,
weighted_mean
,
bits_per_byte
from
lm_eval
import
utils
...
...
@@ -233,10 +235,27 @@ class BaseLM(LM):
toks
=
x
[
1
]
+
x
[
2
]
return
-
len
(
toks
),
tuple
(
toks
)
# TODO: automatic (variable) batch size detection for vectorization
re_ord
=
utils
.
Reorderer
(
requests
,
_collate
)
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
_
,
context_enc
,
continuation_enc
=
re_ord
.
get_reordered
()[
0
]
max_context
=
len
(
context_enc
)
+
len
(
continuation_enc
)
if
self
.
batch_size
==
'auto'
:
print
(
'Passed argument batch_size = auto. Detecting largest batch size'
)
@
find_executable_batch_size
(
starting_batch_size
=
512
)
# if OOM, then halves batch_size and tries again
def
forward_batch
(
batch_size
):
test_batch
=
torch
.
ones
((
batch_size
,
max_context
),
device
=
self
.
device
).
long
()
self
.
_model_call
(
test_batch
)
return
batch_size
batch_size
=
forward_batch
()
print
(
f
"Determined Largest batch size:
{
batch_size
}
"
)
adaptive_batch_size
=
batch_size
for
chunk
in
utils
.
chunks
(
tqdm
(
re_ord
.
get_reordered
(),
disable
=
disable_tqdm
),
self
.
batch_size
tqdm
(
re_ord
.
get_reordered
(),
disable
=
disable_tqdm
),
self
.
batch_size
if
self
.
batch_size
!=
"auto"
else
adaptive_batch_size
):
inps
=
[]
cont_toks_list
=
[]
...
...
lm_eval/models/gpt2.py
View file @
d5720d5f
import
torch
import
transformers
from
lm_eval.base
import
BaseLM
from
accelerate
import
find_executable_batch_size
class
HFLM
(
BaseLM
):
def
__init__
(
...
...
@@ -18,7 +18,7 @@ class HFLM(BaseLM):
assert
isinstance
(
device
,
str
)
assert
isinstance
(
pretrained
,
str
)
assert
isinstance
(
batch_size
,
int
)
assert
isinstance
(
batch_size
,
(
int
,
str
)
)
if
device
:
if
device
not
in
[
"cuda"
,
"cpu"
]:
...
...
@@ -69,13 +69,12 @@ class HFLM(BaseLM):
31373
,
],
self
.
tokenizer
.
encode
(
"hello
\n\n
hello"
)
# multithreading and batching
self
.
batch_size_per_gpu
=
batch_size
# todo: adaptive batch size
# setup for automatic batch size detection
if
batch_size
==
'auto'
:
self
.
batch_size_per_gpu
=
batch_size
else
:
self
.
batch_size_per_gpu
=
int
(
batch_size
)
# TODO: fix multi-gpu
# gpus = torch.cuda.device_count()
# if gpus > 1:
# self.gpt2 = nn.DataParallel(self.gpt2)
@
property
def
eot_token_id
(
self
):
...
...
lm_eval/models/huggingface.py
View file @
d5720d5f
...
...
@@ -129,7 +129,7 @@ class HuggingFaceAutoLM(BaseLM):
assert
isinstance
(
pretrained
,
str
)
assert
isinstance
(
device
,
str
)
assert
isinstance
(
batch_size
,
int
)
assert
isinstance
(
batch_size
,
(
int
,
str
)
)
if
(
add_special_tokens
is
not
None
and
self
.
AUTO_MODEL_CLASS
is
transformers
.
AutoModelForCausalLM
...
...
@@ -143,7 +143,12 @@ class HuggingFaceAutoLM(BaseLM):
not
add_special_tokens
),
"Evaluating causal models with `add_special_tokens=True` is currently not supported."
self
.
_batch_size
=
batch_size
# TODO: Adaptive batch size
# setup for automatic batch size detection
if
batch_size
==
'auto'
:
self
.
_batch_size
=
batch_size
else
:
self
.
_batch_size
=
int
(
batch_size
)
self
.
_max_gen_toks
=
max_gen_toks
self
.
_max_length
=
max_length
self
.
_config
=
self
.
AUTO_CONFIG_CLASS
.
from_pretrained
(
...
...
main.py
View file @
d5720d5f
...
...
@@ -32,7 +32,7 @@ def parse_args():
parser
.
add_argument
(
"--tasks"
,
default
=
None
,
choices
=
MultiChoice
(
tasks
.
ALL_TASKS
))
parser
.
add_argument
(
"--provide_description"
,
action
=
"store_true"
)
parser
.
add_argument
(
"--num_fewshot"
,
type
=
int
,
default
=
0
)
parser
.
add_argument
(
"--batch_size"
,
type
=
int
,
default
=
None
)
parser
.
add_argument
(
"--batch_size"
,
type
=
str
,
default
=
None
)
parser
.
add_argument
(
"--device"
,
type
=
str
,
default
=
None
)
parser
.
add_argument
(
"--output_path"
,
default
=
None
)
parser
.
add_argument
(
"--limit"
,
type
=
int
,
default
=
None
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment