evaluator.py 15.6 KB
Newer Older
Leo Gao's avatar
Leo Gao committed
1
2
import collections
import itertools
Leo Gao's avatar
Leo Gao committed
3
import random
4

Leo Gao's avatar
Leo Gao committed
5
import lm_eval.metrics
6
7
8
import lm_eval.models
import lm_eval.tasks
import lm_eval.base
Stephen Hogg's avatar
Stephen Hogg committed
9
from lm_eval.utils import positional_deprecated, run_task_tests
10
11
12
13
from lm_eval.models.gpt2 import HFLM

import numpy as np
import transformers
14

Fabrizio Milo's avatar
Fabrizio Milo committed
15

16
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
17
18
19
20
21
22
def simple_evaluate(
    model,
    model_args=None,
    tasks=[],
    num_fewshot=0,
    batch_size=None,
23
    max_batch_size=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
24
25
26
27
28
29
30
    device=None,
    no_cache=False,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    check_integrity=False,
    decontamination_ngrams_path=None,
31
32
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
33
):
34
    """Instantiate and evaluate a model on a list of tasks.
35

36
37
38
    :param model: Union[str, LM]
        Name of model or LM object, see lm_eval.models.get_model
    :param model_args: Optional[str]
Fabrizio Milo's avatar
Fabrizio Milo committed
39
        String arguments for each model class, see LM.create_from_arg_string.
40
41
        Ignored if `model` argument is a LM object.
    :param tasks: list[Union[str, Task]]
Leo Gao's avatar
Leo Gao committed
42
        List of task names or Task objects. Task objects will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
43
44
    :param num_fewshot: int
        Number of examples in few-shot context
45
    :param batch_size: int or str, optional
46
        Batch size for model
47
48
    :param max_batch_size: int, optional
        Maximal batch size to try with automatic batch size detection
49
    :param device: str, optional
50
        PyTorch device (e.g. "cpu" or "cuda:0") for running models
51
    :param no_cache: bool
Leo Gao's avatar
Leo Gao committed
52
        Whether or not to cache
53
54
    :param limit: int or float, optional
        Limit the number of examples per task (only use this for testing), If <1, limit is a percentage of the total number of examples.
55
56
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
57
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
58
        Dictionary of custom task descriptions of the form: `task_name: description`
Stephen Hogg's avatar
Stephen Hogg committed
59
60
    :param check_integrity: bool
        Whether to run the relevant part of the test suite for the tasks
61
    :param write_out: bool
62
        If True, write details about prompts and logits to json for all tasks
63
    :param output_base_path: str, optional
64
        Directory to which detailed eval info will be written. Defaults to present working dir.
65
    :return
66
        Dictionary of results
67
    """
68
69
70
    random.seed(1234)
    np.random.seed(1234)

71
72
73
    assert tasks != [], "No tasks specified"

    if isinstance(model, str):
Fabrizio Milo's avatar
Fabrizio Milo committed
74
75
76
        if model_args is None:
            model_args = ""
        lm = lm_eval.models.get_model(model).create_from_arg_string(
77
            model_args, {"batch_size": batch_size, "max_batch_size": max_batch_size, "device": device}
Fabrizio Milo's avatar
Fabrizio Milo committed
78
        )
79
80
81
82
83
    elif isinstance(model, transformers.PreTrainedModel):
        lm = HFLM(
                pretrained=model,
                )
        no_cache = True
84
85
86
    else:
        assert isinstance(model, lm_eval.base.LM)
        lm = model
87
88

    if not no_cache:
89
        lm = lm_eval.base.CachingLM(
Fabrizio Milo's avatar
Fabrizio Milo committed
90
91
            lm,
            "lm_cache/"
92
            + (model if isinstance(model, str) else model.model.config._name_or_path)
Fabrizio Milo's avatar
Fabrizio Milo committed
93
94
95
            + "_"
            + model_args.replace("=", "-").replace(",", "_").replace("/", "-")
            + ".db",
96
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
97

98
    task_dict = lm_eval.tasks.get_task_dict(tasks)
Jonathan Tow's avatar
Merge  
Jonathan Tow committed
99

Stephen Hogg's avatar
Stephen Hogg committed
100
    if check_integrity:
101
        run_task_tests(task_list=tasks)
Stephen Hogg's avatar
Stephen Hogg committed
102

103
104
105
106
107
    results = evaluate(
        lm=lm,
        task_dict=task_dict,
        num_fewshot=num_fewshot,
        limit=limit,
Niklas Muennighoff's avatar
Niklas Muennighoff committed
108
        bootstrap_iters=bootstrap_iters,
109
        description_dict=description_dict,
Fabrizio Milo's avatar
Fabrizio Milo committed
110
        decontamination_ngrams_path=decontamination_ngrams_path,
111
112
        write_out=write_out,
        output_base_path=output_base_path,
113
    )
114
115

    # add info about the model and few shot config
116
117
118
119
120
    model_name = None
    if isinstance(model, str):
        model_name = model
    elif isinstance(model, transformers.PreTrainedModel):
        model_name = "pretrained=" + model.config._name_or_path
121
    results["config"] = {
122
        "model": model_name,
123
124
125
        "model_args": model_args,
        "num_fewshot": num_fewshot,
        "batch_size": batch_size,
gk's avatar
gk committed
126
        "batch_sizes": list(lm.batch_sizes.values()) if hasattr(lm, "batch_sizes") else [],
127
128
129
        "device": device,
        "no_cache": no_cache,
        "limit": limit,
130
        "bootstrap_iters": bootstrap_iters,
Fabrizio Milo's avatar
Fabrizio Milo committed
131
        "description_dict": description_dict,
132
133
134
    }

    return results
Leo Gao's avatar
Leo Gao committed
135

Fabrizio Milo's avatar
Fabrizio Milo committed
136

137
decontaminate_suffix = "_decontaminate"
Leo Gao's avatar
Leo Gao committed
138

Fabrizio Milo's avatar
Fabrizio Milo committed
139

140
@positional_deprecated
Fabrizio Milo's avatar
Fabrizio Milo committed
141
142
143
144
145
146
147
148
149
def evaluate(
    lm,
    task_dict,
    provide_description=None,
    num_fewshot=0,
    limit=None,
    bootstrap_iters=100000,
    description_dict=None,
    decontamination_ngrams_path=None,
150
151
    write_out=False,
    output_base_path=None,
Fabrizio Milo's avatar
Fabrizio Milo committed
152
):
153
154
155
156
157
    """Instantiate and evaluate a model on a list of tasks.

    :param lm: obj
        Language Model
    :param task_dict: dict[str, Task]
Leo Gao's avatar
Leo Gao committed
158
        Dictionary of tasks. Tasks will be taken to have name task.EVAL_HARNESS_NAME if defined and type(task).__name__ otherwise.
159
    :param provide_description: bool
Leo Gao's avatar
Leo Gao committed
160
        Not implemented, and this option is deprecated and will be removed in a future version in favor of a different description providing method
161
162
163
164
165
166
    :param num_fewshot: int
        Number of examples in few-shot context
    :param limit: int, optional
        Limit the number of examples per task (only use this for testing)
    :param bootstrap_iters:
        Number of iterations for bootstrap statistics
Jonathan Tow's avatar
Jonathan Tow committed
167
    :param description_dict: dict[str, str]
Fabrizio Milo's avatar
Fabrizio Milo committed
168
        Dictionary of custom task descriptions of the form: `task_name: description`
169
    :param write_out: bool
170
        If True, write all prompts, logits and metrics to json for offline analysis
171
    :param output_base_path: str, optional
172
        Directory to which detailed eval info will be written. Defaults to present working dir
173
174
175
    :return
        Dictionary of results
    """
Leo Gao's avatar
Leo Gao committed
176
177
    # TODO: completely refactor this entire function to not be a huge mess, ideally breaking it down into smaller pieces

178
179
    # TODO: todo: implement proper description-providing system
    assert not provide_description  # not implemented.
Leo Gao's avatar
Leo Gao committed
180
181
    if provide_description is not None:
        # nudge people to not specify it at all
Fabrizio Milo's avatar
Fabrizio Milo committed
182
183
184
        print(
            "WARNING: provide_description is deprecated and will be removed in a future version in favor of description_dict"
        )
185

Leo Gao's avatar
Leo Gao committed
186
    decontaminate = decontamination_ngrams_path is not None
187

188
189
190
    task_dict_items = [
        (name, task)
        for name, task in task_dict.items()
Fabrizio Milo's avatar
Fabrizio Milo committed
191
        if (task.has_validation_docs() or task.has_test_docs())
192
    ]
Leo Gao's avatar
Leo Gao committed
193
194

    results = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
195
    versions = collections.defaultdict(dict)
Leo Gao's avatar
Leo Gao committed
196
197
198
199

    requests = collections.defaultdict(list)
    requests_origin = collections.defaultdict(list)

Fabrizio Milo's avatar
Fabrizio Milo committed
200
    overlaps = collections.defaultdict(list)  # {task_name: contaminated_docs}
201

202
203
204
205
    # If we ever run into issues where the eval tasks don't fit in memory and we can't afford a machine with bigger
    # memory, we can always modify this plumbing to support that, but I didn't want to include it just yet because
    # over-engineering is bad (or we could make it write the requests to disk and then read them back out again
    #  - probably using an sqlite db because of all the moving parts we have
Leo Gao's avatar
Leo Gao committed
206
207
208

    # TODO: we need unit tests & sanity checks or something to ensure that the return of `validation_docs` is stable
    docs = {}
Julen Etxaniz's avatar
Julen Etxaniz committed
209
    write_out_info = {}
Leo Gao's avatar
Leo Gao committed
210

211
212
    docs_for_decontamination = collections.defaultdict(list)

213
    # get lists of each type of request
Leo Gao's avatar
Leo Gao committed
214
    for task_name, task in task_dict_items:
Leo Gao's avatar
Leo Gao committed
215
        versions[task_name] = task.VERSION
216
        # default to test doc, fall back to val doc if validation unavailable
Leo Gao's avatar
Leo Gao committed
217
218
        # TODO: the test-fallback-to-val system isn't final, we should revisit it at some point
        if task.has_test_docs():
Leo Gao's avatar
Leo Gao committed
219
            task_doc_func = task.test_docs
Fabrizio Milo's avatar
Fabrizio Milo committed
220
            task_set = "test"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
221
        elif task.has_validation_docs():
Fabrizio Milo's avatar
Fabrizio Milo committed
222
            task_set = "val"  # Required for caching in the decontamination
Leo Gao's avatar
Leo Gao committed
223
            task_doc_func = task.validation_docs
224
225
        else:
            raise RuntimeError("Task has neither test_docs nor validation_docs")
Leo Gao's avatar
Leo Gao committed
226

Leo Gao's avatar
Leo Gao committed
227
228
229
230
        # deterministically shuffle docs and chop off the first `limit` because sometimes docs are in some kind of order
        task_docs = list(task_doc_func())
        rnd = random.Random()
        rnd.seed(42)
Jason Phang's avatar
Jason Phang committed
231
        rnd.shuffle(task_docs)
232
233
        print(f"Task: {task_name}; number of docs: {len(task_docs)}")

234
        if write_out:
235
            prompt_details = []
Leo Gao's avatar
Leo Gao committed
236

Fabrizio Milo's avatar
Fabrizio Milo committed
237
238
239
240
241
        description = (
            description_dict[task_name]
            if description_dict and task_name in description_dict
            else ""
        )
242
243
        if limit is not None:
            limit = int(len(task_docs) * limit) if limit < 1.0 else int(limit)
244

Leo Gao's avatar
Leo Gao committed
245
        for doc_id, doc in enumerate(itertools.islice(task_docs, 0, limit)):
246
            if decontaminate and task.should_decontaminate():
Fabrizio Milo's avatar
Fabrizio Milo committed
247
248
249
                docs_for_decontamination[(task_name, task_set)].append(
                    task.doc_to_decontamination_query(doc)
                )
250

Leo Gao's avatar
Leo Gao committed
251
252
            docs[(task_name, doc_id)] = doc
            ctx = task.fewshot_context(
Fabrizio Milo's avatar
Fabrizio Milo committed
253
                doc=doc, num_fewshot=num_fewshot, rnd=rnd, description=description
Leo Gao's avatar
Leo Gao committed
254
255
            )
            reqs = task.construct_requests(doc, ctx)
256

257
            if write_out:
258
259
260
261
262
263
264
265
266
                prompt_details.append({"doc_id": doc_id})

            # print the prompt for the first few documents
            if doc_id < 1:
                print(
                    f"Task: {task_name}; document {doc_id}; context prompt (starting on next line):\n{ctx}\n(end of prompt on previous line)"
                )
                print("Requests:", reqs)

267
268
            if not isinstance(reqs, (list, tuple)):
                reqs = [reqs]
Leo Gao's avatar
Leo Gao committed
269
            for i, req in enumerate(reqs):
Leo Gao's avatar
Leo Gao committed
270
                requests[req.request_type].append(req)
Leo Gao's avatar
Leo Gao committed
271
272
                # i: index in requests for a single task instance
                # doc_id: unique id that we can get back to a doc using `docs`
Leo Gao's avatar
Leo Gao committed
273
                requests_origin[req.request_type].append((i, task_name, doc, doc_id))
Leo Gao's avatar
Leo Gao committed
274

275
                if write_out:
276
277
278
279
                    prompt_details[-1][f"prompt_{i}"] = "".join(
                        (map(lambda x: "".join(x), req.args))
                    )

280
        if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
281
            write_out_info[task_name] = prompt_details
282

283
284
    # Compare all tasks/sets at once to ensure a single training set scan
    if decontaminate:
285
        from lm_eval.decontamination.decontaminate import get_train_overlap
jon-tow's avatar
jon-tow committed
286

287
        print("Finding train/test overlap, please wait...")
Fabrizio Milo's avatar
Fabrizio Milo committed
288
289
290
        overlaps = get_train_overlap(
            docs_for_decontamination, decontamination_ngrams_path, limit
        )
291

Leo Gao's avatar
Leo Gao committed
292
293
294
295
296
    # all responses for each (task, doc)
    process_res_queue = collections.defaultdict(list)

    # execute each type of request
    for reqtype, reqs in requests.items():
297
298
299
300
        # TODO: right now, this code runs multiple separate LM requests for multiple Requests differing
        #       only in index. We could implement some kind of caching, but that would be more of a band-aid
        #       solution. we could also implement some kind of auto-grouping here;
        #       they should end up next to each other.
Leo Gao's avatar
Leo Gao committed
301

Leo Gao's avatar
Leo Gao committed
302
        print("Running", reqtype, "requests")
Leo Gao's avatar
Leo Gao committed
303
        resps = getattr(lm, reqtype)([req.args for req in reqs])
Fabrizio Milo's avatar
Fabrizio Milo committed
304
305
306
        resps = [
            x if req.index is None else x[req.index] for x, req in zip(resps, reqs)
        ]
Leo Gao's avatar
Leo Gao committed
307
308
309

        for resp, (i, task_name, doc, doc_id) in zip(resps, requests_origin[reqtype]):
            process_res_queue[(task_name, doc_id)].append((i, resp))
Fabrizio Milo's avatar
Fabrizio Milo committed
310

311
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
312
                write_out_info[task_name][doc_id][f"logit_{i}"] = resp
313
314
                task = task_dict[task_name]
                if isinstance(task, lm_eval.base.MultipleChoiceTask):
Julen Etxaniz's avatar
Julen Etxaniz committed
315
                    write_out_info[task_name][doc_id]["truth"] = doc["gold"]
316
                elif isinstance(task, lm_eval.tasks.winogrande.Winogrande):
Julen Etxaniz's avatar
Julen Etxaniz committed
317
                    write_out_info[task_name][doc_id]["truth"] = task.answer_to_num[
318
319
320
                        doc["answer"]
                    ]
                else:
Julen Etxaniz's avatar
Julen Etxaniz committed
321
                    write_out_info[task_name][doc_id]["truth"] = task.doc_to_target(doc)
322

Leo Gao's avatar
Leo Gao committed
323
324
325
326
327
328
329
330
331
332
333
334
335
    vals = collections.defaultdict(list)

    # unpack results and sort back in order and return control to Task
    for (task_name, doc_id), requests in process_res_queue.items():
        requests.sort(key=lambda x: x[0])
        requests = [x[1] for x in requests]

        task = task_dict[task_name]
        doc = docs[(task_name, doc_id)]

        metrics = task.process_results(doc, requests)
        for metric, value in metrics.items():
            vals[(task_name, metric)].append(value)
336

337
            if write_out:
Julen Etxaniz's avatar
Julen Etxaniz committed
338
                write_out_info[task_name][doc_id][metric] = str(value)
339

340
341
342
343
            # Re-use the evaluation for the decontaminated set by just ignoring the overlaps
            if decontaminate and task_name in overlaps:
                if doc_id not in overlaps[task_name]:
                    vals[(task_name, metric + decontaminate_suffix)].append(value)
Fabrizio Milo's avatar
Fabrizio Milo committed
344

Leo Gao's avatar
Leo Gao committed
345
346
347
    # aggregate results
    for (task_name, metric), items in vals.items():
        task = task_dict[task_name]
Fabrizio Milo's avatar
Fabrizio Milo committed
348
        real_metric = metric  # key when looking up the metric with task.aggregation
349
        if metric.endswith(decontaminate_suffix):
Fabrizio Milo's avatar
Fabrizio Milo committed
350
351
352
            real_metric = metric.replace(
                decontaminate_suffix, ""
            )  # decontaminated still uses the same metric
353
        results[task_name][metric] = task.aggregation()[real_metric](items)
Leo Gao's avatar
Leo Gao committed
354

355
356
        # hotfix: bleu, chrf, ter seem to be really expensive to bootstrap
        # so we run them less iterations. still looking for a cleaner way to do this
357

358
        stderr = lm_eval.metrics.stderr_for_metric(
359
            metric=task.aggregation()[real_metric],
Fabrizio Milo's avatar
Fabrizio Milo committed
360
361
362
            bootstrap_iters=min(bootstrap_iters, 1000)
            if metric in ["bleu", "chrf", "ter"]
            else bootstrap_iters,
363
        )
Fabrizio Milo's avatar
Fabrizio Milo committed
364

Leo Gao's avatar
Leo Gao committed
365
366
        if stderr is not None:
            results[task_name][metric + "_stderr"] = stderr(items)
Fabrizio Milo's avatar
Fabrizio Milo committed
367

368
    if write_out:
369
370
371
        import json
        import pathlib

372
373
374
        output_base_path = (
            pathlib.Path(output_base_path)
            if output_base_path is not None
375
376
377
            else pathlib.Path(".")
        )
        try:
378
            output_base_path.mkdir(parents=True, exist_ok=False)
379
380
381
382
383
        except FileExistsError:
            pass

        for task_name, _ in task_dict_items:
            with open(
Julen Etxaniz's avatar
Julen Etxaniz committed
384
                output_base_path.joinpath(f"{task_name}_write_out_info.json"),
385
386
387
                "w",
                encoding="utf8",
            ) as fp:
Julen Etxaniz's avatar
Julen Etxaniz committed
388
                json.dump(write_out_info[task_name], fp, indent=4, ensure_ascii=False)
389

Fabrizio Milo's avatar
Fabrizio Milo committed
390
    return {"results": dict(results), "versions": dict(versions)}
391
392
393


def make_table(result_dict):
394
    """Generate table of results."""
395
396
397
398
399
400
401
402
403
404
405
406
    from pytablewriter import MarkdownTableWriter, LatexTableWriter

    md_writer = MarkdownTableWriter()
    latex_writer = LatexTableWriter()
    md_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]
    latex_writer.headers = ["Task", "Version", "Metric", "Value", "", "Stderr"]

    values = []

    for k, dic in result_dict["results"].items():
        version = result_dict["versions"][k]
        for m, v in dic.items():
407
408
            if m.endswith("_stderr"):
                continue
409
410
411

            if m + "_stderr" in dic:
                se = dic[m + "_stderr"]
Fabrizio Milo's avatar
Fabrizio Milo committed
412
                values.append([k, version, m, "%.4f" % v, "±", "%.4f" % se])
413
            else:
Fabrizio Milo's avatar
Fabrizio Milo committed
414
                values.append([k, version, m, "%.4f" % v, "", ""])
415
416
417
418
419
420
421
422
            k = ""
            version = ""
    md_writer.value_matrix = values
    latex_writer.value_matrix = values

    # todo: make latex table look good
    # print(latex_writer.dumps())

423
    return md_writer.dumps()