test_flash_attn.py 95.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
Tri Dao's avatar
Tri Dao committed
14
    flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
15
)
16
from flash_attn.bert_padding import pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
17
from flash_attn.flash_attn_interface import _get_block_size_n
18
from flash_attn.layers.rotary import apply_rotary_emb
Tri Dao's avatar
Tri Dao committed
19
20

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
21

Tri Dao's avatar
Tri Dao committed
22

Tri Dao's avatar
Tri Dao committed
23
24
25
26
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
27
28


29
def attn_bias_from_alibi_slopes(
30
    slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False, key_leftpad=None
31
32
33
34
35
36
37
38
39
):
    batch, nheads = slopes.shape
    device = slopes.device
    slopes = rearrange(slopes, "b h -> b h 1 1")
    if causal:
        return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
    else:
        row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
        col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
40
41
42
43
        if key_leftpad is not None:
            key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
            col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
            col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
44
45
46
47
48
49
50
51
52
53
54
55
56
57
        sk = (
            seqlen_k
            if key_padding_mask is None
            else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        sq = (
            seqlen_q
            if query_padding_mask is None
            else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        relative_pos = torch.abs(row_idx + sk - sq - col_idx)
        return -slopes * relative_pos.to(dtype=slopes.dtype)


Tri Dao's avatar
Tri Dao committed
58
59
60
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
61
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
62
    elif mode == "random":
63
64
65
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
66
    elif mode == "third":
67
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
68
69
70
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
71
72
73
    return padding_mask


Tri Dao's avatar
Tri Dao committed
74
75
76
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
77
78
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
79
80
81
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
82
83
84
85
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
86
87
88
89
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
90
91
92

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
93
94
95
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
96
    else:
Tri Dao's avatar
Tri Dao committed
97
98
99
100
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
101
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
102
103
104
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
105
106
107
108
109

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
110
111
112
113
114
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
115
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
116
117
118

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
119
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
120
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
121
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
122
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
123
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
124
        else:
Tri Dao's avatar
Tri Dao committed
125
126
127
128
129
130
131
132
133
134
135
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
136
137
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
138
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
139
140
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
141
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
142
        else:
Tri Dao's avatar
Tri Dao committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
159
160
161
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
162
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
163
        else:
Tri Dao's avatar
Tri Dao committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
180
181


Tri Dao's avatar
Tri Dao committed
182
183
184
185
186
187
188
def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
Tri Dao's avatar
Tri Dao committed
189
    key_leftpad=None,
190
):
191
192
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
Tri Dao's avatar
Tri Dao committed
193
194
195
196
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
197
198
199
200
201
202
203
204
205
206
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
Tri Dao's avatar
Tri Dao committed
207
208
209
210
211
212
213
214
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )
215
216


Tri Dao's avatar
Tri Dao committed
217
218
219
220
221
222
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
223
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
224
225
226
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
227
    window_size=(-1, -1),  # -1 means infinite window size
Nicolas Patry's avatar
Nicolas Patry committed
228
    softcap=0.0,
Tri Dao's avatar
Tri Dao committed
229
230
    upcast=True,
    reorder_ops=False,
Tri Dao's avatar
Tri Dao committed
231
    key_leftpad=None,
Tri Dao's avatar
Tri Dao committed
232
):
Tri Dao's avatar
Tri Dao committed
233
234
235
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
236
237
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
238
239
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
240
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
241
242
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
243
244
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
Tri Dao's avatar
Tri Dao committed
245
246
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
cao lei's avatar
cao lei committed
247
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
Tri Dao's avatar
Tri Dao committed
248
249
250
251
252
253
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
Tri Dao's avatar
Tri Dao committed
254
255
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
256
257
258
259
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
260
261
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
262
263
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
264
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
265
    else:
Tri Dao's avatar
Tri Dao committed
266
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Nicolas Patry's avatar
Nicolas Patry committed
267
    if softcap > 0:
Phil Wang's avatar
Phil Wang committed
268
        scores = scores / softcap
Nicolas Patry's avatar
Nicolas Patry committed
269
        scores = scores.tanh()
Phil Wang's avatar
Phil Wang committed
270
        scores = scores * softcap
Tri Dao's avatar
Tri Dao committed
271
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
272
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
273
274
275
276
277
278
279
280
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
281
            key_leftpad=key_leftpad,
Tri Dao's avatar
Tri Dao committed
282
        )
Tri Dao's avatar
Tri Dao committed
283
        scores.masked_fill_(local_mask, float("-inf"))
284
285
286
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
Tri Dao's avatar
Tri Dao committed
287
288
289
290
291
292
293
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
294
295
296
297
298
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
299
300
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
301
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
302
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
303
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
304
305
306
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
307
308
309
310
311
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
312
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
313
314
315
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
316
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
317
    softcap=0.0,
Tri Dao's avatar
Tri Dao committed
318
319
    upcast=True,
    reorder_ops=False,
Tri Dao's avatar
Tri Dao committed
320
    key_leftpad=None,
Tri Dao's avatar
Tri Dao committed
321
322
323
324
325
326
327
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
328
        attn_bias,
Tri Dao's avatar
Tri Dao committed
329
330
331
332
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
333
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
334
        softcap=softcap,
Tri Dao's avatar
Tri Dao committed
335
        reorder_ops=reorder_ops,
Tri Dao's avatar
Tri Dao committed
336
        key_leftpad=key_leftpad,
Tri Dao's avatar
Tri Dao committed
337
    )
Tri Dao's avatar
Tri Dao committed
338
339


Tri Dao's avatar
Tri Dao committed
340
341
342
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
343
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
344
345
346
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
347
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
348
    softcap=0.0,
Tri Dao's avatar
Tri Dao committed
349
350
351
352
353
354
355
356
357
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
358
        attn_bias,
Tri Dao's avatar
Tri Dao committed
359
360
361
362
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
363
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
364
        softcap=softcap,
Tri Dao's avatar
Tri Dao committed
365
366
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
367
368
369
370
371
372
373
374
375
376
377


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
378
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
397
398
399
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
400
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
401
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
402
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
403
404
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
405
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
406
407
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
408
409
410
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
411
def convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
412
413
414
415
416
417
418
419
420
    S,
    seqlen_q,
    seqlen_k,
    query_padding_mask,
    key_padding_mask,
    head_dim,
    is_dropout,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
421
):
Tri Dao's avatar
Tri Dao committed
422
423
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
424
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
425
426
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
427
    """
Tri Dao's avatar
Tri Dao committed
428
429
    if causal:
        window_size = (window_size[0], 0)
430
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
431
    S_converted = S
Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
438
439
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            S.device,
Tri Dao's avatar
Tri Dao committed
440
        )
Tri Dao's avatar
Tri Dao committed
441
442
        local_mask = F.pad(
            local_mask,
443
444
445
            (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
            value=True,
        )
Tri Dao's avatar
Tri Dao committed
446
        S_converted = S_converted.masked_fill(local_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
447
448
449

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
450
451
452
    seqlen_q_og = (
        query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
    )
Tri Dao's avatar
Tri Dao committed
453
    if query_padding_mask is not None:
454
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
455
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
456
457
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
458
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
459
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
460
461
462
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
463
464


Tri Dao's avatar
Tri Dao committed
465
466
467
468
469
470
471
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
472
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
473
474
    is_dropout=False,
    causal=False,
Tri Dao's avatar
Tri Dao committed
475
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
476
):
Tri Dao's avatar
Tri Dao committed
477
478
479
480
481
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
482
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
483
484
485
486
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
Tri Dao's avatar
Tri Dao committed
487
488
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
489
490
491
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
492
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
493
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
494
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
495
496
497
498
499
500
501
502
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
503
        )
Tri Dao's avatar
Tri Dao committed
504
        scores.masked_fill_(local_mask, float("-inf"))
505
506
    if attn_bias is not None:
        scores = scores + attn_bias.to(dtype=scores.dtype)
Tri Dao's avatar
Tri Dao committed
507
    block_size_n = _get_block_size_n(scores.device, head_dim, is_dropout, causal)
Tri Dao's avatar
Tri Dao committed
508
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
509
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
510
    lse = torch.logsumexp(lse_block, dim=-1)
511
512
513
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
514
515
516
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
517
518
    attn_norm = torch.cat(
        [
519
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
520
521
522
523
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
524
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
525
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
526
527
528
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
529
def get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
530
531
532
533
534
    dropout_mask,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
535
):
Tri Dao's avatar
Tri Dao committed
536
537
538
539
540
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
Tri Dao's avatar
Tri Dao committed
541
542
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
543
544
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
Tri Dao's avatar
Tri Dao committed
545
    valid = torch.ones_like(dropout_mask)
Tri Dao's avatar
Tri Dao committed
546
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
547
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
548
        valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
549
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
550
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
551
552
553
554
555
556
557
558
559
        valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            dropout_mask.device,
Tri Dao's avatar
Tri Dao committed
560
        )
Tri Dao's avatar
Tri Dao committed
561
562
        dropped.masked_fill_(local_mask, False)
        valid.masked_fill_(local_mask, False)
Tri Dao's avatar
Tri Dao committed
563
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
564
    return dropped.sum() / valid.sum()
Tri Dao's avatar
Tri Dao committed
565
566


Tri Dao's avatar
Tri Dao committed
567
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
568
# @pytest.mark.parametrize("dtype", [torch.float16])
569
@pytest.mark.parametrize("deterministic", [False, True])
570
# @pytest.mark.parametrize("deterministic", [False])
571
@pytest.mark.parametrize("alibi", [False, True])
572
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
573
@pytest.mark.parametrize("local", [False, True])
574
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
575
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
576
# @pytest.mark.parametrize("causal", [False])
Tri Dao's avatar
Tri Dao committed
577
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
578
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
579
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
580
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
581
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
582
@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
583
# @pytest.mark.parametrize("seqlen", [512])
Tri Dao's avatar
Tri Dao committed
584
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
585
# @pytest.mark.parametrize("dropout_p", [0.0])
586
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
587
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
588
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
589
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
590
591
    # set seed
    torch.random.manual_seed(0)
592
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
593
    nheads = 9
Tri Dao's avatar
Tri Dao committed
594
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
595
596
597
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
598
599
600
601
602
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
603
    out, lse, S_dmask = flash_attn_qkvpacked_func(
604
605
606
607
608
        qkv,
        dropout_p,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
609
        deterministic=deterministic,
610
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
611
    )
Tri Dao's avatar
Tri Dao committed
612
613
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
614
615
616
617
618
619
620
621
622
            S_dmask,
            seqlen,
            seqlen,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
623
        )
Tri Dao's avatar
Tri Dao committed
624
625
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
626
627
628
629
630
631
632
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
633
            attn_bias,
Tri Dao's avatar
Tri Dao committed
634
635
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
636
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
637
        )
Tri Dao's avatar
Tri Dao committed
638
639
640
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
641
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
642
643
644
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
645
    out_ref, attn_ref = attention_qkvpacked_ref(
646
        qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
647
    )
Tri Dao's avatar
Tri Dao committed
648
    out_pt, attn_pt = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
649
650
        qkv,
        None,
651
        attn_bias,
Tri Dao's avatar
Tri Dao committed
652
653
654
655
656
657
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
658
    )
Tri Dao's avatar
Tri Dao committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
677
678
679
680
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
681
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
682
683
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
684
685
686
687
688

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
689
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
690
691
692
693
694
695
696
697
698
699
700
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
701
702
703

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
704
705
706
707
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
708
709
710
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
711

712
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
713
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
714
715


Tri Dao's avatar
Tri Dao committed
716
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
717
# @pytest.mark.parametrize('dtype', [torch.float16])
718
719
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
720
721
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
722
723
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
724
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
725
# @pytest.mark.parametrize('causal', [False])
726
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
727
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
728
# @pytest.mark.parametrize('d', [64])
729
@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
730
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
731
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
732
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
733
734
735
def test_flash_attn_varlen_qkvpacked(
    seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype
):
Tri Dao's avatar
Tri Dao committed
736
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
737
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
738
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
739
740
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
741
742
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
743
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
744
745
746
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
747

Tri Dao's avatar
Tri Dao committed
748
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
749
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
750
751
752
753
754
755
756
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
757

Tri Dao's avatar
Tri Dao committed
758
759
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
760
    )
Tri Dao's avatar
Tri Dao committed
761
762

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
763
764
765
766
767
768
        qkv_unpad,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        causal=causal,
        window_size=window_size,
769
        alibi_slopes=alibi_slopes,
770
        deterministic=deterministic,
Tri Dao's avatar
Tri Dao committed
771
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
772
    )
Tri Dao's avatar
Tri Dao committed
773
774
775
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
776
777
778
779
780
781
782
783
            S_dmask,
            seqlen,
            seqlen,
            key_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
784
            window_size=window_size,
785
        )
Tri Dao's avatar
Tri Dao committed
786
787
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
788
789
790
791
792
793
794
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
795
            attn_bias,
Tri Dao's avatar
Tri Dao committed
796
797
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
798
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
799
800
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
801
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
802
803
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
804
805
806
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
807
    out_ref, attn_ref = attention_qkvpacked_ref(
808
809
810
811
812
813
814
        qkv,
        key_padding_mask,
        attn_bias,
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
815
816
817
818
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
819
        attn_bias,
Tri Dao's avatar
Tri Dao committed
820
821
822
        dropout_p,
        dropout_mask,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
823
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
824
825
826
827
828
829
830
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
831
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
832
833
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
834
835

    g = torch.randn_like(out)
836
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
837
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
838
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
839
840
841
842
843
844
845
846
847
848
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
849
850
851

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
852
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
853

Tri Dao's avatar
Tri Dao committed
854
855
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
856
857
858
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
859

860
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
861
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
862
863


Tri Dao's avatar
Tri Dao committed
864
@pytest.mark.parametrize("kvpacked", [True, False])
865
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
866
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
867
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
868
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
869
# @pytest.mark.parametrize("mha_type", ["mha"])
870
871
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
872
@pytest.mark.parametrize("alibi", [False, True])
873
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
874
@pytest.mark.parametrize("local", [False, True])
875
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
876
@pytest.mark.parametrize("causal", [False, True])
877
# @pytest.mark.parametrize("causal", [True])
878
@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
879
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
880
881
882
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
883
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
899
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
900
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
901
# @pytest.mark.parametrize("dropout_p", [0.0])
Nicolas Patry's avatar
Nicolas Patry committed
902
@pytest.mark.parametrize("softcap", [0.0, 50.0])
Tri Dao's avatar
Tri Dao committed
903
def test_flash_attn_output(
Nicolas Patry's avatar
Nicolas Patry committed
904
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked, softcap
Tri Dao's avatar
Tri Dao committed
905
):
Tri Dao's avatar
Tri Dao committed
906
907
908
909
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
910
        pytest.skip()  # Reference implementation OOM
911
912
    if softcap > 0.0 and dropout_p > 0.0:
        pytest.skip("Softcap and dropout not supported together")
Tri Dao's avatar
Tri Dao committed
913
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
914
915
    # set seed
    torch.random.manual_seed(0)
916
    batch_size = 4
917
918
    nheads = 6 if softcap == 0.0 else 4  # softcap reference impl takes more memory
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 2)
Tri Dao's avatar
Tri Dao committed
919
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
920
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
921
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
Nicolas Patry's avatar
Nicolas Patry committed
922
923
924
    if softcap > 0:
        # Ensure the values of qk are at least within softcap range.
        q = q * softcap
Tri Dao's avatar
Tri Dao committed
925
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
926
927
928
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
929
    else:
Tri Dao's avatar
Tri Dao committed
930
931
932
933
934
935
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
936
937
938
939
940
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
941
942
943

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
944
945
946
947
948
            q,
            kv,
            dropout_p,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
949
            softcap=softcap,
950
            alibi_slopes=alibi_slopes,
951
            deterministic=deterministic,
952
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
953
954
955
        )
    else:
        out, lse, S_dmask = flash_attn_func(
956
957
958
959
960
961
            q,
            k,
            v,
            dropout_p,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
962
            softcap=softcap,
963
            alibi_slopes=alibi_slopes,
964
            deterministic=deterministic,
965
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
966
967
968
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
969
970
971
972
973
974
975
976
977
            S_dmask,
            seqlen_q,
            seqlen_k,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
978
        )
Tri Dao's avatar
Tri Dao committed
979
980
981
982
983
984
985
986
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
987
        attn = normalize_flash_attn_S(
Tri Dao's avatar
Tri Dao committed
988
989
990
991
992
993
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            None,
            None,
994
            attn_bias,
Tri Dao's avatar
Tri Dao committed
995
996
997
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
998
        )
Tri Dao's avatar
Tri Dao committed
999
1000
1001
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
1002
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1003
1004
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
1005

Tri Dao's avatar
Tri Dao committed
1006
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1007
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1008
1009
1010
1011
            q,
            kv,
            None,
            None,
1012
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1013
1014
1015
1016
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1017
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1018
1019
1020
1021
1022
1023
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
1024
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1025
1026
1027
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1028
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1029
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1030
1031
1032
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1033
    else:
Tri Dao's avatar
Tri Dao committed
1034
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1035
1036
1037
1038
1039
            q,
            k,
            v,
            None,
            None,
1040
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1041
1042
1043
1044
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1045
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1046
1047
1048
1049
1050
1051
1052
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
1053
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1054
1055
1056
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1057
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1058
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1059
1060
1061
1062
1063
1064
1065
1066
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1067
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1068
1069
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1070
1071
1072

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1073
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1074
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1075
1076
1077
1078
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1079
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
1080
1081
1082
1083
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1084
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1085
1086
1087
1088
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1089
1090
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1118
1119
1120

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1121
1122
1123
1124
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1125
1126
1127
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1128

1129
1130
1131
1132
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1133
1134


Tri Dao's avatar
Tri Dao committed
1135
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
1136
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
1137
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1138
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1139
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
1140
# @pytest.mark.parametrize('mha_type', ["mqa"])
1141
1142
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1143
1144
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1145
1146
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1147
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1148
# @pytest.mark.parametrize('causal', [True])
1149
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1150
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1151
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1152
1153
1154
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
1155
        (1, 147),
Tri Dao's avatar
Tri Dao committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
1168
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
1169
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Nicolas Patry's avatar
Nicolas Patry committed
1170
@pytest.mark.parametrize("softcap", [0.0, 50.0])
1171
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
1172
def test_flash_attn_varlen_output(
Nicolas Patry's avatar
Nicolas Patry committed
1173
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked, softcap
Tri Dao's avatar
Tri Dao committed
1174
1175
1176
1177
1178
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
1179
        pytest.skip()  # Reference implementation OOM
1180
1181
    if softcap > 0.0 and dropout_p > 0.0:
        pytest.skip("Softcap and dropout not supported together")
Tri Dao's avatar
Tri Dao committed
1182
    device = "cuda"
1183
1184
    # set seed
    torch.random.manual_seed(0)
1185
    batch_size = 4
1186
1187
    nheads = 6 if softcap == 0.0 else 4  # softcap reference impl takes more memory
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 2)
Tri Dao's avatar
Tri Dao committed
1188
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1189
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1190
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
Nicolas Patry's avatar
Nicolas Patry committed
1191
1192
1193
    if softcap > 0:
        # Ensure the values of qk are at least within softcap range.
        q = q * softcap
1194

Tri Dao's avatar
Tri Dao committed
1195
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1196
1197
1198
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
1199
    else:
Tri Dao's avatar
Tri Dao committed
1200
1201
1202
1203
1204
1205
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
1206

Tri Dao's avatar
Tri Dao committed
1207
1208
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
1209
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
1210
1211
1212
1213
1214
1215
1216
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1217
1218

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
1232
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
1233
1234
1235
1236
1237
1238
1239
1240
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1241
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1242
            softcap=softcap,
1243
            alibi_slopes=alibi_slopes,
1244
            deterministic=deterministic,
1245
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1246
1247
        )
    else:
Tri Dao's avatar
Tri Dao committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
1263
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1273
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1274
            softcap=softcap,
1275
            alibi_slopes=alibi_slopes,
1276
            deterministic=deterministic,
1277
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1278
        )
Tri Dao's avatar
Tri Dao committed
1279
1280
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1281
        S_dmask_converted = convert_flash_attn_S_to_softmax(
1282
1283
1284
1285
1286
1287
1288
1289
            S_dmask,
            seqlen_q,
            seqlen_k,
            query_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1290
            window_size=window_size,
1291
        )
Tri Dao's avatar
Tri Dao committed
1292
1293
1294
1295
1296
1297
1298
1299
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1300
1301
1302
1303
1304
1305
1306
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
1307
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1308
1309
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1310
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1311
1312
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
1313
1314
1315
1316
1317
            dropout_mask,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1318
1319
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1320
1321
1322
1323
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1324
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1325
1326
1327
1328
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1329
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1330
1331
1332
1333
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1334
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1335
1336
1337
1338
1339
1340
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1341
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1342
1343
1344
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1345
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1346
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1347
1348
1349
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1350
    else:
Tri Dao's avatar
Tri Dao committed
1351
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1352
1353
1354
1355
1356
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1357
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1358
1359
1360
1361
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1362
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1363
1364
1365
1366
1367
1368
1369
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1370
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1371
1372
1373
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1374
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1375
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1376
1377
1378
1379
1380
1381
1382
1383
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1384
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1385
1386
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1387
1388

    g = torch.randn_like(out)
1389
    if ((d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90)):
Tri Dao's avatar
Tri Dao committed
1390
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1391
1392
1393
1394
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1395
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1396
1397
1398
1399
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1400
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1401
1402
1403
1404
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1405
1406
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1407
1408
1409
1410
1411
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1412
1413
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1424
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1437
1438
1439

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1440
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1441

Tri Dao's avatar
Tri Dao committed
1442
1443
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1444
1445
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
Tri Dao's avatar
Tri Dao committed
1446
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.04)
Tri Dao's avatar
Tri Dao committed
1447

1448
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
1449
1450
1451
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1452

1453

Tri Dao's avatar
Tri Dao committed
1454
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1455
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1456
1457
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1458
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1459
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1482
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1494
    batch_size = 8
1495
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1496
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1497
1498
1499
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1500
1501
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
    out_ref, attn_ref = attention_ref(
1502
        q, k, v, None, None, None, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1503
    )
1504
1505
1506
1507
1508
1509
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1510
        None,
1511
1512
1513
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1514
        window_size=window_size,
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
    (
        dq,
        dk,
        dv,
    ) = torch.autograd.grad(out, (q, k, v), g)
    (
        dq_ref,
        dk_ref,
        dv_ref,
    ) = torch.autograd.grad(out_ref, (q, k, v), g)
    (
        dq_pt,
        dk_pt,
        dv_pt,
    ) = torch.autograd.grad(out_pt, (q, k, v), g)
    print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
    print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
    print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
    print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
    print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
    print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
    print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
    print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
    print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
    print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
    print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
    print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1553
1554
1555
1556
1557

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1558
1559
1560
    assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
    assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
    assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5
1561
1562
1563
1564


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1565
1566
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1567
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1568
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1569
1570
1571
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
1572
# @pytest.mark.parametrize("d", [64])
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
1590
1591
# TODO: add smaller page sizes when https://github.com/Dao-AILab/flash-attention/pull/824 is merged
@pytest.mark.parametrize("paged_kv_block_size", [None, 256, 512])
1592
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
1593
1594
1595
def test_flash_attn_varlen_causal(
    seqlen_q, seqlen_k, swap_sq_sk, d, local, paged_kv_block_size, dtype
):
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1607
    batch_size = 8
1608
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1609
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1610
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

    if paged_kv_block_size is None:
        k = torch.randn(
            batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
        )
        block_table = None
    else:
        k, v, block_table, k_cache_paged, v_cache_paged, num_blocks = _generate_block_kvcache(
            seqlen_k, paged_kv_block_size, batch_size, nheads, d, device, dtype
        )
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
1643
1644
        k_unpad if paged_kv_block_size is None else k_cache_paged,
        v_unpad if paged_kv_block_size is None else v_cache_paged,
1645
1646
1647
1648
1649
1650
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1651
        window_size=window_size,
1652
        block_table=block_table,
1653
1654
1655
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1656
1657
1658
1659
1660
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1661
        None,
Tri Dao's avatar
Tri Dao committed
1662
1663
1664
1665
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1666
1667
1668
1669
1670
1671
1672
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1673
        None,
1674
1675
1676
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1677
        window_size=window_size,
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1689
    test_backward = block_table is None
1690
    if test_backward:
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1726
    if test_backward:
1727
1728
1729
1730
1731
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


Tri Dao's avatar
Tri Dao committed
1732
1733
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
1734
1735
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1736
1737
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1738
@pytest.mark.parametrize("local", [False, True])
1739
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1740
1741
1742
1743
1744
1745
1746
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1747
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
1748
1749
1750
1751
1752
1753
1754
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (3, 1024),
        (1, 339),
1755
        (64, 800),
Tri Dao's avatar
Tri Dao committed
1756
1757
1758
1759
1760
1761
1762
1763
1764
        (3, 799),
        (64, 2048),
        (16, 20000),
        (16, 100000),
        (128, 128),
        (256, 256),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1765
1766
1767
def test_flash_attn_splitkv(
    seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, alibi, deterministic, dtype
):
Tri Dao's avatar
Tri Dao committed
1768
1769
1770
1771
1772
1773
1774
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 1
    nheads = 12
Tri Dao's avatar
Tri Dao committed
1775
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1776
1777
1778
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
1779
1780
1781
1782
1783
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1784
    out, lse, _ = flash_attn_func(
1785
1786
1787
1788
1789
1790
1791
        q,
        k,
        v,
        0.0,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
1792
        deterministic=deterministic,
1793
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1794
1795
    )
    out_ref, attn_ref = attention_ref(
1796
        q, k, v, None, None, attn_bias, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1797
    )
Tri Dao's avatar
Tri Dao committed
1798
1799
1800
1801
1802
1803
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1804
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1805
1806
1807
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1808
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
    (
        dq,
        dk,
        dv,
    ) = torch.autograd.grad(out, (q, k, v), g)
    (
        dq_ref,
        dk_ref,
        dv_ref,
    ) = torch.autograd.grad(out_ref, (q, k, v), g)
    (
        dq_pt,
        dk_pt,
        dv_pt,
    ) = torch.autograd.grad(out_pt, (q, k, v), g)
    print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
    print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
    print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
    print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
    print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
    print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
    print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
    print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
    print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
    print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
    print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
    print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1847
1848
1849
1850
1851

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1852
    mult = 2 if not alibi else 8
1853
1854
1855
    assert (dq - dq_ref).abs().max().item() <= mult * (dq_pt - dq_ref).abs().max().item() + 2e-4
    assert (dk - dk_ref).abs().max().item() <= mult * (dk_pt - dk_ref).abs().max().item() + 2e-4
    assert (dv - dv_ref).abs().max().item() <= mult * (dv_pt - dv_ref).abs().max().item() + 2e-4
Tri Dao's avatar
Tri Dao committed
1856

1857

1858
1859
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1860
@pytest.mark.parametrize("num_splits", [1, 0])
1861
# @pytest.mark.parametrize("num_splits", [1])
Tri Dao's avatar
Tri Dao committed
1862
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
1863
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
1864
@pytest.mark.parametrize("new_kv", [False, True])
1865
1866
# @pytest.mark.parametrize("new_kv", [False])
@pytest.mark.parametrize("alibi", [False, True])
Tri Dao's avatar
Tri Dao committed
1867
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
1868
@pytest.mark.parametrize("local", [False, True])
1869
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1870
@pytest.mark.parametrize("causal", [False, True])
1871
# @pytest.mark.parametrize("causal", [False])
1872
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
1873
1874
1875
1876
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
1877
# @pytest.mark.parametrize("rotary_fraction", [0.0])
1878
1879
@pytest.mark.parametrize("paged_kv_block_size", [None, 256])
# @pytest.mark.parametrize("paged_kv_block_size", [256, 512])
Tri Dao's avatar
Tri Dao committed
1880
1881
1882
1883
1884
# @pytest.mark.parametrize("paged_kv_block_size", [None])
@pytest.mark.parametrize("has_leftpad", [False, True])
# @pytest.mark.parametrize("has_leftpad", [True])
# @pytest.mark.parametrize("has_batch_idx", [False, True])
@pytest.mark.parametrize("has_batch_idx", [False])
Tri Dao's avatar
Tri Dao committed
1885
1886
@pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1887
1888
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1889
# @pytest.mark.parametrize("d", [128])
Tri Dao's avatar
Tri Dao committed
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        (1, 128 * 1024),
        (16, 128 * 1024),
        (128, 128),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1907
def test_flash_attn_kvcache(
1908
1909
1910
    seqlen_q,
    seqlen_k,
    d,
1911
    has_batch_idx,
Tri Dao's avatar
Tri Dao committed
1912
    has_leftpad,
Tri Dao's avatar
Tri Dao committed
1913
    paged_kv_block_size,
1914
1915
1916
1917
    rotary_fraction,
    rotary_interleaved,
    seqlen_new_eq_seqlen_q,
    causal,
Tri Dao's avatar
Tri Dao committed
1918
    local,
1919
    alibi,
1920
1921
1922
1923
    new_kv,
    mha_type,
    num_splits,
    dtype,
1924
):
Tri Dao's avatar
Tri Dao committed
1925
1926
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
1927
1928
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1929
1930
    if has_batch_idx and paged_kv_block_size is not None:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1931
1932
    if has_leftpad and paged_kv_block_size is not None:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1933
1934
1935
1936
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
1937
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
Tri Dao's avatar
Tri Dao committed
1938
    nheads = 6
1939
1940
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
Tri Dao's avatar
Tri Dao committed
1941
1942
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1943
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1944
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
1945
    seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
Tri Dao's avatar
Tri Dao committed
1946
    if new_kv:
1947
1948
        k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
        v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1949
1950
    else:
        k, v = None, None
Tri Dao's avatar
Tri Dao committed
1951
1952
1953
1954
1955
    if paged_kv_block_size is None:
        k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
        v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
        block_table = None
    else:
1956
1957
1958
1959
1960
1961
1962
1963
1964
        (
            k_cache,
            v_cache,
            block_table,
            k_cache_paged,
            v_cache_paged,
            num_blocks,
        ) = _generate_block_kvcache(
            seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype
Tri Dao's avatar
Tri Dao committed
1965
        )
1966
    cache_seqlens = torch.randint(
Tri Dao's avatar
Tri Dao committed
1967
        0 if new_kv else 1,
1968
        # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
1969
1970
1971
1972
1973
        (
            (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
            if new_kv
            else (seqlen_k + 1)
        ),
1974
1975
1976
1977
        (batch_size,),
        dtype=torch.int32,
        device=device,
    )
Tri Dao's avatar
Tri Dao committed
1978
1979
1980
1981
1982
1983
    if has_leftpad:
        cache_leftpad = torch.cat([torch.randint(0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device)
                                   if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device)
                                   for i in range(batch_size)])
    else:
        cache_leftpad = None
1984
1985
1986
    arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
    cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
    key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
Tri Dao's avatar
Tri Dao committed
1987
1988
1989
1990
    if has_leftpad:
        key_padding_mask = torch.logical_and(
            key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k)
        )
1991
    if has_batch_idx:
1992
1993
1994
        cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
            :batch_size
        ]
1995
1996
    else:
        cache_batch_idx = None
1997
1998
1999
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
2000
            alibi_slopes, seqlen_q, seqlen_k, None, key_padding_mask, causal=causal, key_leftpad=cache_leftpad
2001
2002
2003
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
2004
    # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
2005
    if rotary_dim > 0:
Tri Dao's avatar
Tri Dao committed
2006
2007
2008
2009
2010
2011
2012
2013
2014
        angle = (
            torch.rand(
                seqlen_k if paged_kv_block_size is None else num_blocks * paged_kv_block_size,
                rotary_dim // 2,
                device=device,
            )
            * 2
            * math.pi
        )
2015
2016
        cos = torch.cos(angle).to(dtype=dtype)
        sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
2017
        if causal or local:
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
            q_ro = apply_rotary_emb(
                q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
            )
        else:
            q_ro = rearrange(
                apply_rotary_emb(
                    rearrange(q, "b s h d -> b 1 (s h) d"),
                    cos,
                    sin,
                    seqlen_offsets=cache_seqlens,
                    interleaved=rotary_interleaved,
                ),
                "b 1 (s h) d -> b s h d",
                s=seqlen_q,
            )
        # q_ro = q
        k_ro = apply_rotary_emb(
            k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
        )
    else:
        cos, sin = None, None
        q_ro, k_ro = q, k
Tri Dao's avatar
Tri Dao committed
2040
    # k_cache[:, 64:] = -1
2041
2042
2043
2044
2045
2046
    k_cache_ref = (
        k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
    ).clone()
    v_cache_ref = (
        v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
    ).clone()
Tri Dao's avatar
Tri Dao committed
2047
    if new_kv:
2048
2049
2050
        update_mask = torch.logical_and(
            cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
        )
2051
        k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
Tri Dao's avatar
Tri Dao committed
2052
2053
2054
        v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
    k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
    v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
2055
    out = flash_attn_with_kvcache(
2056
        q,
Tri Dao's avatar
Tri Dao committed
2057
2058
        k_cache if paged_kv_block_size is None else k_cache_paged,
        v_cache if paged_kv_block_size is None else v_cache_paged,
2059
2060
        k,
        v,
Tri Dao's avatar
Tri Dao committed
2061
2062
2063
2064
        rotary_cos=cos,
        rotary_sin=sin,
        cache_seqlens=cache_seqlens,
        cache_batch_idx=cache_batch_idx,
Tri Dao's avatar
Tri Dao committed
2065
        cache_leftpad=cache_leftpad,
Tri Dao's avatar
Tri Dao committed
2066
        block_table=block_table,
2067
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2068
        window_size=window_size,
2069
        rotary_interleaved=rotary_interleaved,
2070
        alibi_slopes=alibi_slopes,
2071
        num_splits=num_splits,
2072
    )
Tri Dao's avatar
Tri Dao committed
2073
2074
2075
2076
    # out = flash_attn_with_kvcache(
    #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
    # )
    # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
Tri Dao's avatar
Tri Dao committed
2077
2078
2079
2080
2081
2082
    # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # probs = torch.softmax(qk, dim=-1)
2083
    out_ref, _ = attention_ref(
Tri Dao's avatar
Tri Dao committed
2084
2085
2086
2087
2088
        q_ro,
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2089
        attn_bias,
Tri Dao's avatar
Tri Dao committed
2090
2091
2092
2093
        0.0,
        None,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
2094
        key_leftpad=cache_leftpad,
2095
2096
    )
    out_pt, _ = attention_ref(
2097
        q_ro,
2098
2099
2100
2101
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2102
        attn_bias,
2103
2104
2105
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2106
        window_size=window_size,
2107
2108
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
2109
        key_leftpad=cache_leftpad,
2110
    )
Tri Dao's avatar
Tri Dao committed
2111
2112
2113
2114
2115
2116
2117
2118
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    if new_kv:
Tri Dao's avatar
Tri Dao committed
2119
        if paged_kv_block_size is None:
2120
2121
2122
2123
2124
2125
            k_cache_select = (
                k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
            )
            v_cache_select = (
                v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
            )
Tri Dao's avatar
Tri Dao committed
2126
2127
        else:
            k_cache_select = rearrange(
2128
                k_cache_paged[block_table.to(dtype=torch.long).flatten()],
Tri Dao's avatar
Tri Dao committed
2129
2130
2131
2132
                "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                b=batch_size,
            )[:, :seqlen_k]
            v_cache_select = rearrange(
2133
                v_cache_paged[block_table.to(dtype=torch.long).flatten()],
Tri Dao's avatar
Tri Dao committed
2134
2135
2136
                "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                b=batch_size,
            )[:, :seqlen_k]
2137
2138
        assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
        assert torch.equal(v_cache_select, v_cache_ref)
2139
2140
    mult = 3 if not alibi else 5
    assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
Tri Dao's avatar
Tri Dao committed
2141

Tri Dao's avatar
Tri Dao committed
2142

2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
def _generate_block_kvcache(seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype):
    num_blocks = math.ceil(seqlen_k / paged_kv_block_size) * batch_size * 3
    k_cache_paged = torch.randn(
        num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
    )
    v_cache_paged = torch.randn(
        num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
    )
    block_table = rearrange(
        torch.randperm(num_blocks, dtype=torch.int32, device=device),
        "(b nblocks) -> b nblocks",
        b=batch_size,
    )
    k_cache = rearrange(
        # pytorch 1.12 doesn't have indexing with int32
        k_cache_paged[block_table.to(dtype=torch.long).flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    v_cache = rearrange(
        v_cache_paged[block_table.to(dtype=torch.long).flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    return k_cache, v_cache, block_table, k_cache_paged, v_cache_paged, num_blocks


2170
2171
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
2172
@pytest.mark.parametrize("causal", [False, True])
2173
2174
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
2175
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
2176
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
2177
# @pytest.mark.parametrize('d', [128])
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
2197
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
2198
2199
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2200
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
2201
2202
    # set seed
    torch.random.manual_seed(0)
2203
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
2204
    nheads = 4
2205
2206
2207
2208
2209
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2210
    g = torch.randn_like(out0)
2211
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
2212
2213
2214
2215
2216
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
2217
        # Numerical error if we just do any arithmetic on dq
2218
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2219

2220
2221
2222
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2223
2224
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
2225

2226
        if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
2227
2228
2229
2230
2231
2232
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
2233
            if not dq_equal:
2234
2235
2236
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
2237
            assert dq_equal
2238
2239


Tri Dao's avatar
Tri Dao committed
2240
2241
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2242
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2243
@pytest.mark.parametrize("d", [16, 32, 64])
2244
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
2245
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
2246
2247
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2248
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2249
2250
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
2251
    device = "cuda"
2252
2253
2254
2255
2256
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
2257
2258
2259
2260
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2277
2278
2279
2280
2281
2282
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2283
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
2296
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
2297
@pytest.mark.parametrize("causal", [False, True])
2298
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2299
@pytest.mark.parametrize("d", [64, 128])
2300
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
2301
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
2302
2303
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2304
    """We previously had a bug where we were using the wrong strides of dout, which shows up
2305
2306
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
2307
    device = "cuda"
2308
2309
2310
2311
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
2312
2313
2314
2315
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2332
2333
2334
2335
2336
2337
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2338
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2352
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2353
@pytest.mark.parametrize("d", [16, 32, 64])
2354
2355
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2356
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2357
2358
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
2359
    device = "cuda"
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size, deterministic=True)

    g = torch.randn_like(out)
2433
2434
2435
2436
2437
2438
    dq0, dk0, dv0 = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
    for _ in range(50):
        dq, dk, dv = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
        assert torch.equal(dv, dv0)
        assert torch.equal(dk, dk0)
        assert torch.equal(dq, dq0)
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
        window_size=window_size,
        deterministic=True,
    )

    g = torch.randn_like(out)
2520
2521
2522
2523
2524
2525
    dq0, dk0, dv0 = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
    for _ in range(50):
        dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
        assert torch.equal(dv, dv0)
        assert torch.equal(dk, dk0)
        assert torch.equal(dq, dq0)