test_flash_attn.py 95.6 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
Tri Dao's avatar
Tri Dao committed
14
    flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
15
)
16
from flash_attn.bert_padding import pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
17
from flash_attn.flash_attn_interface import _get_block_size_n
18
from flash_attn.layers.rotary import apply_rotary_emb
Tri Dao's avatar
Tri Dao committed
19
20

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
21

Tri Dao's avatar
Tri Dao committed
22

Tri Dao's avatar
Tri Dao committed
23
24
25
26
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
27
28


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def attn_bias_from_alibi_slopes(
    slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
    batch, nheads = slopes.shape
    device = slopes.device
    slopes = rearrange(slopes, "b h -> b h 1 1")
    if causal:
        return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
    else:
        row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
        col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
        sk = (
            seqlen_k
            if key_padding_mask is None
            else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        sq = (
            seqlen_q
            if query_padding_mask is None
            else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        relative_pos = torch.abs(row_idx + sk - sq - col_idx)
        return -slopes * relative_pos.to(dtype=slopes.dtype)


Tri Dao's avatar
Tri Dao committed
54
55
56
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
57
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
58
    elif mode == "random":
59
60
61
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
62
    elif mode == "third":
63
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
64
65
66
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
67
68
69
    return padding_mask


Tri Dao's avatar
Tri Dao committed
70
71
72
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
73
74
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
75
76
77
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
78
79
80
81
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
82
83
84
85
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
86
87
88

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
89
90
91
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
92
    else:
Tri Dao's avatar
Tri Dao committed
93
94
95
96
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
97
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
98
99
100
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
101
102
103
104
105

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
111
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
112
113
114

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
115
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
116
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
117
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
118
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
119
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
120
        else:
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
129
130
131
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
132
133
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
134
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
135
136
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
137
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
138
        else:
Tri Dao's avatar
Tri Dao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
155
156
157
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
158
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
159
        else:
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
176
177


Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184
def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
Tri Dao's avatar
Tri Dao committed
185
    key_leftpad=None,
186
):
187
188
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
Tri Dao's avatar
Tri Dao committed
189
190
191
192
    if key_leftpad is not None:
        key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
        col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
        col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
193
194
195
196
197
198
199
200
201
202
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
Tri Dao's avatar
Tri Dao committed
203
204
205
206
207
208
209
210
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )
211
212


Tri Dao's avatar
Tri Dao committed
213
214
215
216
217
218
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
219
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
220
221
222
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
223
    window_size=(-1, -1),  # -1 means infinite window size
Nicolas Patry's avatar
Nicolas Patry committed
224
    softcap=0.0,
Tri Dao's avatar
Tri Dao committed
225
226
    upcast=True,
    reorder_ops=False,
Tri Dao's avatar
Tri Dao committed
227
    key_leftpad=None,
Tri Dao's avatar
Tri Dao committed
228
):
Tri Dao's avatar
Tri Dao committed
229
230
231
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
232
233
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
234
235
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
236
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
237
238
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
239
240
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
Tri Dao's avatar
Tri Dao committed
241
242
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
cao lei's avatar
cao lei committed
243
        reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
Tri Dao's avatar
Tri Dao committed
244
245
246
247
248
249
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
Tri Dao's avatar
Tri Dao committed
250
251
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
252
253
254
255
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
256
257
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
258
259
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
260
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
261
    else:
Tri Dao's avatar
Tri Dao committed
262
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Nicolas Patry's avatar
Nicolas Patry committed
263
    if softcap > 0:
Phil Wang's avatar
Phil Wang committed
264
        scores = scores / softcap
Nicolas Patry's avatar
Nicolas Patry committed
265
        scores = scores.tanh()
Phil Wang's avatar
Phil Wang committed
266
        scores = scores * softcap
Tri Dao's avatar
Tri Dao committed
267
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
268
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
269
270
271
272
273
274
275
276
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
277
            key_leftpad=key_leftpad,
Tri Dao's avatar
Tri Dao committed
278
        )
Tri Dao's avatar
Tri Dao committed
279
        scores.masked_fill_(local_mask, float("-inf"))
280
281
282
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
Tri Dao's avatar
Tri Dao committed
283
284
285
286
287
288
289
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
290
291
292
293
294
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
295
296
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
297
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
298
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
299
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
300
301
302
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
303
304
305
306
307
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
308
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
309
310
311
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
312
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
313
    softcap=0.0,
Tri Dao's avatar
Tri Dao committed
314
315
    upcast=True,
    reorder_ops=False,
Tri Dao's avatar
Tri Dao committed
316
    key_leftpad=None,
Tri Dao's avatar
Tri Dao committed
317
318
319
320
321
322
323
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
324
        attn_bias,
Tri Dao's avatar
Tri Dao committed
325
326
327
328
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
329
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
330
        softcap=softcap,
Tri Dao's avatar
Tri Dao committed
331
        reorder_ops=reorder_ops,
Tri Dao's avatar
Tri Dao committed
332
        key_leftpad=key_leftpad,
Tri Dao's avatar
Tri Dao committed
333
    )
Tri Dao's avatar
Tri Dao committed
334
335


Tri Dao's avatar
Tri Dao committed
336
337
338
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
339
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
340
341
342
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
343
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
344
    softcap=0.0,
Tri Dao's avatar
Tri Dao committed
345
346
347
348
349
350
351
352
353
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
354
        attn_bias,
Tri Dao's avatar
Tri Dao committed
355
356
357
358
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
359
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
360
        softcap=softcap,
Tri Dao's avatar
Tri Dao committed
361
362
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
363
364
365
366
367
368
369
370
371
372
373


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
374
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
393
394
395
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
396
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
397
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
398
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
399
400
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
401
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
402
403
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
404
405
406
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
407
def convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
408
409
410
411
412
413
414
415
416
    S,
    seqlen_q,
    seqlen_k,
    query_padding_mask,
    key_padding_mask,
    head_dim,
    is_dropout,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
417
):
Tri Dao's avatar
Tri Dao committed
418
419
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
420
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
421
422
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
423
    """
Tri Dao's avatar
Tri Dao committed
424
425
    if causal:
        window_size = (window_size[0], 0)
426
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
427
    S_converted = S
Tri Dao's avatar
Tri Dao committed
428
429
430
431
432
433
434
435
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            S.device,
Tri Dao's avatar
Tri Dao committed
436
        )
Tri Dao's avatar
Tri Dao committed
437
438
        local_mask = F.pad(
            local_mask,
439
440
441
            (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
            value=True,
        )
Tri Dao's avatar
Tri Dao committed
442
        S_converted = S_converted.masked_fill(local_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
443
444
445

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
446
447
448
    seqlen_q_og = (
        query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
    )
Tri Dao's avatar
Tri Dao committed
449
    if query_padding_mask is not None:
450
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
451
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
452
453
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
454
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
455
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
456
457
458
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
459
460


Tri Dao's avatar
Tri Dao committed
461
462
463
464
465
466
467
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
468
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
469
470
    is_dropout=False,
    causal=False,
Tri Dao's avatar
Tri Dao committed
471
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
472
):
Tri Dao's avatar
Tri Dao committed
473
474
475
476
477
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
478
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
479
480
481
482
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
Tri Dao's avatar
Tri Dao committed
483
484
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
485
486
487
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
488
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
489
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
490
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
491
492
493
494
495
496
497
498
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
499
        )
Tri Dao's avatar
Tri Dao committed
500
        scores.masked_fill_(local_mask, float("-inf"))
501
502
    if attn_bias is not None:
        scores = scores + attn_bias.to(dtype=scores.dtype)
Tri Dao's avatar
Tri Dao committed
503
    block_size_n = _get_block_size_n(scores.device, head_dim, is_dropout, causal)
Tri Dao's avatar
Tri Dao committed
504
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
505
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
506
    lse = torch.logsumexp(lse_block, dim=-1)
507
508
509
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
510
511
512
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
513
514
    attn_norm = torch.cat(
        [
515
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
516
517
518
519
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
520
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
521
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
522
523
524
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
525
def get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
526
527
528
529
530
    dropout_mask,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
531
):
Tri Dao's avatar
Tri Dao committed
532
533
534
535
536
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
Tri Dao's avatar
Tri Dao committed
537
538
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
539
540
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
Tri Dao's avatar
Tri Dao committed
541
    valid = torch.ones_like(dropout_mask)
Tri Dao's avatar
Tri Dao committed
542
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
543
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
544
        valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
545
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
546
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
547
548
549
550
551
552
553
554
555
        valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            dropout_mask.device,
Tri Dao's avatar
Tri Dao committed
556
        )
Tri Dao's avatar
Tri Dao committed
557
558
        dropped.masked_fill_(local_mask, False)
        valid.masked_fill_(local_mask, False)
Tri Dao's avatar
Tri Dao committed
559
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
560
    return dropped.sum() / valid.sum()
Tri Dao's avatar
Tri Dao committed
561
562


Tri Dao's avatar
Tri Dao committed
563
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
564
# @pytest.mark.parametrize("dtype", [torch.float16])
565
@pytest.mark.parametrize("deterministic", [False, True])
566
# @pytest.mark.parametrize("deterministic", [False])
567
@pytest.mark.parametrize("alibi", [False, True])
568
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
569
@pytest.mark.parametrize("local", [False, True])
570
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
571
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
572
# @pytest.mark.parametrize("causal", [False])
Tri Dao's avatar
Tri Dao committed
573
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
574
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
575
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
576
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
577
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
578
@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
579
# @pytest.mark.parametrize("seqlen", [512])
Tri Dao's avatar
Tri Dao committed
580
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
581
# @pytest.mark.parametrize("dropout_p", [0.0])
582
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
583
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
584
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
585
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
586
587
    # set seed
    torch.random.manual_seed(0)
588
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
589
    nheads = 9
Tri Dao's avatar
Tri Dao committed
590
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
591
592
593
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
594
595
596
597
598
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
599
    out, lse, S_dmask = flash_attn_qkvpacked_func(
600
601
602
603
604
        qkv,
        dropout_p,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
605
        deterministic=deterministic,
606
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
607
    )
Tri Dao's avatar
Tri Dao committed
608
609
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
610
611
612
613
614
615
616
617
618
            S_dmask,
            seqlen,
            seqlen,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
619
        )
Tri Dao's avatar
Tri Dao committed
620
621
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
622
623
624
625
626
627
628
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
629
            attn_bias,
Tri Dao's avatar
Tri Dao committed
630
631
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
632
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
633
        )
Tri Dao's avatar
Tri Dao committed
634
635
636
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
637
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
638
639
640
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
641
    out_ref, attn_ref = attention_qkvpacked_ref(
642
        qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
643
    )
Tri Dao's avatar
Tri Dao committed
644
    out_pt, attn_pt = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
645
646
        qkv,
        None,
647
        attn_bias,
Tri Dao's avatar
Tri Dao committed
648
649
650
651
652
653
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
654
    )
Tri Dao's avatar
Tri Dao committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
673
674
675
676
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
677
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
678
679
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
680
681
682
683
684

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
685
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
686
687
688
689
690
691
692
693
694
695
696
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
697
698
699

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
700
701
702
703
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
704
705
706
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
707

708
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
709
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
710
711


Tri Dao's avatar
Tri Dao committed
712
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
713
# @pytest.mark.parametrize('dtype', [torch.float16])
714
715
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
716
717
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
718
719
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
720
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
721
# @pytest.mark.parametrize('causal', [False])
722
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
723
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
724
# @pytest.mark.parametrize('d', [64])
725
@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
726
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
727
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
728
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
729
730
731
def test_flash_attn_varlen_qkvpacked(
    seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype
):
Tri Dao's avatar
Tri Dao committed
732
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
733
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
734
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
735
736
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
737
738
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
739
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
740
741
742
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
743

Tri Dao's avatar
Tri Dao committed
744
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
745
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
746
747
748
749
750
751
752
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
753

Tri Dao's avatar
Tri Dao committed
754
755
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
756
    )
Tri Dao's avatar
Tri Dao committed
757
758

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
759
760
761
762
763
764
        qkv_unpad,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        causal=causal,
        window_size=window_size,
765
        alibi_slopes=alibi_slopes,
766
        deterministic=deterministic,
Tri Dao's avatar
Tri Dao committed
767
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
768
    )
Tri Dao's avatar
Tri Dao committed
769
770
771
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
772
773
774
775
776
777
778
779
            S_dmask,
            seqlen,
            seqlen,
            key_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
780
            window_size=window_size,
781
        )
Tri Dao's avatar
Tri Dao committed
782
783
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
784
785
786
787
788
789
790
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
791
            attn_bias,
Tri Dao's avatar
Tri Dao committed
792
793
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
794
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
795
796
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
797
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
798
799
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
800
801
802
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
803
    out_ref, attn_ref = attention_qkvpacked_ref(
804
805
806
807
808
809
810
        qkv,
        key_padding_mask,
        attn_bias,
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
811
812
813
814
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
815
        attn_bias,
Tri Dao's avatar
Tri Dao committed
816
817
818
        dropout_p,
        dropout_mask,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
819
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
820
821
822
823
824
825
826
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
827
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
828
829
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
830
831

    g = torch.randn_like(out)
832
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
833
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
834
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
835
836
837
838
839
840
841
842
843
844
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
845
846
847

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
848
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
849

Tri Dao's avatar
Tri Dao committed
850
851
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
852
853
854
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
855

856
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
857
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
858
859


Tri Dao's avatar
Tri Dao committed
860
@pytest.mark.parametrize("kvpacked", [True, False])
861
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
862
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
863
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
864
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
865
# @pytest.mark.parametrize("mha_type", ["mha"])
866
867
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
868
@pytest.mark.parametrize("alibi", [False, True])
869
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
870
@pytest.mark.parametrize("local", [False, True])
871
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
872
@pytest.mark.parametrize("causal", [False, True])
873
# @pytest.mark.parametrize("causal", [True])
874
@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
875
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
876
877
878
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
879
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
895
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
896
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
897
# @pytest.mark.parametrize("dropout_p", [0.0])
Nicolas Patry's avatar
Nicolas Patry committed
898
@pytest.mark.parametrize("softcap", [0.0, 50.0])
Tri Dao's avatar
Tri Dao committed
899
def test_flash_attn_output(
Nicolas Patry's avatar
Nicolas Patry committed
900
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked, softcap
Tri Dao's avatar
Tri Dao committed
901
):
Tri Dao's avatar
Tri Dao committed
902
903
904
905
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
906
        pytest.skip()  # Reference implementation OOM
907
908
    if softcap > 0.0 and dropout_p > 0.0:
        pytest.skip("Softcap and dropout not supported together")
Tri Dao's avatar
Tri Dao committed
909
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
910
911
    # set seed
    torch.random.manual_seed(0)
912
    batch_size = 4
913
914
    nheads = 6 if softcap == 0.0 else 4  # softcap reference impl takes more memory
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 2)
Tri Dao's avatar
Tri Dao committed
915
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
916
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
917
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
Nicolas Patry's avatar
Nicolas Patry committed
918
919
920
    if softcap > 0:
        # Ensure the values of qk are at least within softcap range.
        q = q * softcap
Tri Dao's avatar
Tri Dao committed
921
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
922
923
924
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
925
    else:
Tri Dao's avatar
Tri Dao committed
926
927
928
929
930
931
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
932
933
934
935
936
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
937
938
939

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
940
941
942
943
944
            q,
            kv,
            dropout_p,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
945
            softcap=softcap,
946
            alibi_slopes=alibi_slopes,
947
            deterministic=deterministic,
948
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
949
950
951
        )
    else:
        out, lse, S_dmask = flash_attn_func(
952
953
954
955
956
957
            q,
            k,
            v,
            dropout_p,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
958
            softcap=softcap,
959
            alibi_slopes=alibi_slopes,
960
            deterministic=deterministic,
961
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
962
963
964
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
965
966
967
968
969
970
971
972
973
            S_dmask,
            seqlen_q,
            seqlen_k,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
974
        )
Tri Dao's avatar
Tri Dao committed
975
976
977
978
979
980
981
982
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
983
        attn = normalize_flash_attn_S(
Tri Dao's avatar
Tri Dao committed
984
985
986
987
988
989
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            None,
            None,
990
            attn_bias,
Tri Dao's avatar
Tri Dao committed
991
992
993
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
994
        )
Tri Dao's avatar
Tri Dao committed
995
996
997
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
998
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
999
1000
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
1001

Tri Dao's avatar
Tri Dao committed
1002
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1003
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1004
1005
1006
1007
            q,
            kv,
            None,
            None,
1008
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1009
1010
1011
1012
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1013
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1014
1015
1016
1017
1018
1019
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
1020
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1021
1022
1023
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1024
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1025
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1026
1027
1028
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1029
    else:
Tri Dao's avatar
Tri Dao committed
1030
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1031
1032
1033
1034
1035
            q,
            k,
            v,
            None,
            None,
1036
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1037
1038
1039
1040
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1041
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1042
1043
1044
1045
1046
1047
1048
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
1049
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1050
1051
1052
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1053
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1054
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1055
1056
1057
1058
1059
1060
1061
1062
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1063
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1064
1065
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1066
1067
1068

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1069
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1070
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1071
1072
1073
1074
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1075
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
1076
1077
1078
1079
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1080
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1081
1082
1083
1084
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1085
1086
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1114
1115
1116

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1117
1118
1119
1120
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1121
1122
1123
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1124

1125
1126
1127
1128
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1129
1130


Tri Dao's avatar
Tri Dao committed
1131
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
1132
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
1133
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1134
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1135
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
1136
# @pytest.mark.parametrize('mha_type', ["mqa"])
1137
1138
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1139
1140
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1141
1142
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1143
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1144
# @pytest.mark.parametrize('causal', [True])
1145
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1146
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1147
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1148
1149
1150
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
1151
        (1, 147),
Tri Dao's avatar
Tri Dao committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
1164
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
1165
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Nicolas Patry's avatar
Nicolas Patry committed
1166
@pytest.mark.parametrize("softcap", [0.0, 50.0])
1167
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
1168
def test_flash_attn_varlen_output(
Nicolas Patry's avatar
Nicolas Patry committed
1169
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked, softcap
Tri Dao's avatar
Tri Dao committed
1170
1171
1172
1173
1174
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
1175
        pytest.skip()  # Reference implementation OOM
1176
1177
    if softcap > 0.0 and dropout_p > 0.0:
        pytest.skip("Softcap and dropout not supported together")
Tri Dao's avatar
Tri Dao committed
1178
    device = "cuda"
1179
1180
    # set seed
    torch.random.manual_seed(0)
1181
    batch_size = 4
1182
1183
    nheads = 6 if softcap == 0.0 else 4  # softcap reference impl takes more memory
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 2)
Tri Dao's avatar
Tri Dao committed
1184
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1185
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1186
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
Nicolas Patry's avatar
Nicolas Patry committed
1187
1188
1189
    if softcap > 0:
        # Ensure the values of qk are at least within softcap range.
        q = q * softcap
1190

Tri Dao's avatar
Tri Dao committed
1191
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1192
1193
1194
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
1195
    else:
Tri Dao's avatar
Tri Dao committed
1196
1197
1198
1199
1200
1201
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
1202

Tri Dao's avatar
Tri Dao committed
1203
1204
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
1205
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
1206
1207
1208
1209
1210
1211
1212
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1213
1214

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
1228
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
1229
1230
1231
1232
1233
1234
1235
1236
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1237
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1238
            softcap=softcap,
1239
            alibi_slopes=alibi_slopes,
1240
            deterministic=deterministic,
1241
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1242
1243
        )
    else:
Tri Dao's avatar
Tri Dao committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
1259
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1269
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1270
            softcap=softcap,
1271
            alibi_slopes=alibi_slopes,
1272
            deterministic=deterministic,
1273
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1274
        )
Tri Dao's avatar
Tri Dao committed
1275
1276
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1277
        S_dmask_converted = convert_flash_attn_S_to_softmax(
1278
1279
1280
1281
1282
1283
1284
1285
            S_dmask,
            seqlen_q,
            seqlen_k,
            query_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1286
            window_size=window_size,
1287
        )
Tri Dao's avatar
Tri Dao committed
1288
1289
1290
1291
1292
1293
1294
1295
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1296
1297
1298
1299
1300
1301
1302
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
1303
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1304
1305
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1306
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1307
1308
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
1309
1310
1311
1312
1313
            dropout_mask,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1314
1315
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1316
1317
1318
1319
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1320
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1321
1322
1323
1324
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1325
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1326
1327
1328
1329
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1330
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1331
1332
1333
1334
1335
1336
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1337
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1338
1339
1340
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1341
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1342
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1343
1344
1345
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1346
    else:
Tri Dao's avatar
Tri Dao committed
1347
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1348
1349
1350
1351
1352
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1353
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1354
1355
1356
1357
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1358
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1359
1360
1361
1362
1363
1364
1365
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1366
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1367
1368
1369
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1370
            window_size=window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1371
            softcap=softcap,
Tri Dao's avatar
Tri Dao committed
1372
1373
1374
1375
1376
1377
1378
1379
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1380
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1381
1382
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1383
1384

    g = torch.randn_like(out)
1385
    if ((d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90)):
Tri Dao's avatar
Tri Dao committed
1386
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1387
1388
1389
1390
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1391
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1392
1393
1394
1395
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1396
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1397
1398
1399
1400
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1401
1402
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1403
1404
1405
1406
1407
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1408
1409
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1420
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1433
1434
1435

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1436
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1437

Tri Dao's avatar
Tri Dao committed
1438
1439
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1440
1441
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
Tri Dao's avatar
Tri Dao committed
1442
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.04)
Tri Dao's avatar
Tri Dao committed
1443

1444
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
1445
1446
1447
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1448

1449

Tri Dao's avatar
Tri Dao committed
1450
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1451
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1452
1453
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1454
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1455
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1478
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1490
    batch_size = 8
1491
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1492
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1493
1494
1495
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1496
1497
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
    out_ref, attn_ref = attention_ref(
1498
        q, k, v, None, None, None, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1499
    )
1500
1501
1502
1503
1504
1505
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1506
        None,
1507
1508
1509
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1510
        window_size=window_size,
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
    (
        dq,
        dk,
        dv,
    ) = torch.autograd.grad(out, (q, k, v), g)
    (
        dq_ref,
        dk_ref,
        dv_ref,
    ) = torch.autograd.grad(out_ref, (q, k, v), g)
    (
        dq_pt,
        dk_pt,
        dv_pt,
    ) = torch.autograd.grad(out_pt, (q, k, v), g)
    print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
    print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
    print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
    print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
    print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
    print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
    print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
    print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
    print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
    print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
    print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
    print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1549
1550
1551
1552
1553

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1554
1555
1556
    assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
    assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
    assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5
1557
1558
1559
1560


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1561
1562
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1563
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1564
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1565
1566
1567
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
1568
# @pytest.mark.parametrize("d", [64])
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
1586
1587
# TODO: add smaller page sizes when https://github.com/Dao-AILab/flash-attention/pull/824 is merged
@pytest.mark.parametrize("paged_kv_block_size", [None, 256, 512])
1588
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
1589
1590
1591
def test_flash_attn_varlen_causal(
    seqlen_q, seqlen_k, swap_sq_sk, d, local, paged_kv_block_size, dtype
):
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1603
    batch_size = 8
1604
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1605
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1606
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

    if paged_kv_block_size is None:
        k = torch.randn(
            batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True
        )
        block_table = None
    else:
        k, v, block_table, k_cache_paged, v_cache_paged, num_blocks = _generate_block_kvcache(
            seqlen_k, paged_kv_block_size, batch_size, nheads, d, device, dtype
        )
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
1639
1640
        k_unpad if paged_kv_block_size is None else k_cache_paged,
        v_unpad if paged_kv_block_size is None else v_cache_paged,
1641
1642
1643
1644
1645
1646
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1647
        window_size=window_size,
1648
        block_table=block_table,
1649
1650
1651
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1652
1653
1654
1655
1656
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1657
        None,
Tri Dao's avatar
Tri Dao committed
1658
1659
1660
1661
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1662
1663
1664
1665
1666
1667
1668
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1669
        None,
1670
1671
1672
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1673
        window_size=window_size,
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1685
    test_backward = block_table is None
1686
    if test_backward:
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1722
    if test_backward:
1723
1724
1725
1726
1727
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


Tri Dao's avatar
Tri Dao committed
1728
1729
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
1730
1731
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1732
1733
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1734
@pytest.mark.parametrize("local", [False, True])
1735
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1736
1737
1738
1739
1740
1741
1742
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1743
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
1744
1745
1746
1747
1748
1749
1750
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (3, 1024),
        (1, 339),
1751
        (64, 800),
Tri Dao's avatar
Tri Dao committed
1752
1753
1754
1755
1756
1757
1758
1759
1760
        (3, 799),
        (64, 2048),
        (16, 20000),
        (16, 100000),
        (128, 128),
        (256, 256),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1761
1762
1763
def test_flash_attn_splitkv(
    seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, alibi, deterministic, dtype
):
Tri Dao's avatar
Tri Dao committed
1764
1765
1766
1767
1768
1769
1770
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 1
    nheads = 12
Tri Dao's avatar
Tri Dao committed
1771
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1772
1773
1774
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
1775
1776
1777
1778
1779
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1780
    out, lse, _ = flash_attn_func(
1781
1782
1783
1784
1785
1786
1787
        q,
        k,
        v,
        0.0,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
1788
        deterministic=deterministic,
1789
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1790
1791
    )
    out_ref, attn_ref = attention_ref(
1792
        q, k, v, None, None, attn_bias, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1793
    )
Tri Dao's avatar
Tri Dao committed
1794
1795
1796
1797
1798
1799
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1800
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1801
1802
1803
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1804
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
    (
        dq,
        dk,
        dv,
    ) = torch.autograd.grad(out, (q, k, v), g)
    (
        dq_ref,
        dk_ref,
        dv_ref,
    ) = torch.autograd.grad(out_ref, (q, k, v), g)
    (
        dq_pt,
        dk_pt,
        dv_pt,
    ) = torch.autograd.grad(out_pt, (q, k, v), g)
    print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
    print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
    print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
    print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
    print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
    print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
    print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
    print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
    print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
    print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
    print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
    print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1843
1844
1845
1846
1847

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1848
    mult = 2 if not alibi else 8
1849
1850
1851
    assert (dq - dq_ref).abs().max().item() <= mult * (dq_pt - dq_ref).abs().max().item() + 2e-4
    assert (dk - dk_ref).abs().max().item() <= mult * (dk_pt - dk_ref).abs().max().item() + 2e-4
    assert (dv - dv_ref).abs().max().item() <= mult * (dv_pt - dv_ref).abs().max().item() + 2e-4
Tri Dao's avatar
Tri Dao committed
1852

1853

1854
1855
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1856
@pytest.mark.parametrize("num_splits", [1, 0])
1857
# @pytest.mark.parametrize("num_splits", [1])
Tri Dao's avatar
Tri Dao committed
1858
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
1859
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
1860
@pytest.mark.parametrize("new_kv", [False, True])
1861
1862
# @pytest.mark.parametrize("new_kv", [False])
@pytest.mark.parametrize("alibi", [False, True])
Tri Dao's avatar
Tri Dao committed
1863
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
1864
@pytest.mark.parametrize("local", [False, True])
1865
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1866
@pytest.mark.parametrize("causal", [False, True])
1867
# @pytest.mark.parametrize("causal", [False])
1868
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
1869
1870
1871
1872
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
1873
# @pytest.mark.parametrize("rotary_fraction", [0.0])
1874
1875
@pytest.mark.parametrize("paged_kv_block_size", [None, 256])
# @pytest.mark.parametrize("paged_kv_block_size", [256, 512])
Tri Dao's avatar
Tri Dao committed
1876
1877
1878
1879
1880
# @pytest.mark.parametrize("paged_kv_block_size", [None])
@pytest.mark.parametrize("has_leftpad", [False, True])
# @pytest.mark.parametrize("has_leftpad", [True])
# @pytest.mark.parametrize("has_batch_idx", [False, True])
@pytest.mark.parametrize("has_batch_idx", [False])
Tri Dao's avatar
Tri Dao committed
1881
1882
@pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1883
1884
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1885
# @pytest.mark.parametrize("d", [128])
Tri Dao's avatar
Tri Dao committed
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        (1, 128 * 1024),
        (16, 128 * 1024),
        (128, 128),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1903
def test_flash_attn_kvcache(
1904
1905
1906
    seqlen_q,
    seqlen_k,
    d,
1907
    has_batch_idx,
Tri Dao's avatar
Tri Dao committed
1908
    has_leftpad,
Tri Dao's avatar
Tri Dao committed
1909
    paged_kv_block_size,
1910
1911
1912
1913
    rotary_fraction,
    rotary_interleaved,
    seqlen_new_eq_seqlen_q,
    causal,
Tri Dao's avatar
Tri Dao committed
1914
    local,
1915
    alibi,
1916
1917
1918
1919
    new_kv,
    mha_type,
    num_splits,
    dtype,
1920
):
Tri Dao's avatar
Tri Dao committed
1921
1922
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
1923
1924
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1925
1926
    if has_batch_idx and paged_kv_block_size is not None:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1927
1928
    if has_leftpad and paged_kv_block_size is not None:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1929
1930
1931
1932
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
1933
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
Tri Dao's avatar
Tri Dao committed
1934
    nheads = 6
1935
1936
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
Tri Dao's avatar
Tri Dao committed
1937
1938
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1939
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1940
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
1941
    seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
Tri Dao's avatar
Tri Dao committed
1942
    if new_kv:
1943
1944
        k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
        v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1945
1946
    else:
        k, v = None, None
Tri Dao's avatar
Tri Dao committed
1947
1948
1949
1950
1951
    if paged_kv_block_size is None:
        k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
        v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
        block_table = None
    else:
1952
1953
1954
1955
1956
1957
1958
1959
1960
        (
            k_cache,
            v_cache,
            block_table,
            k_cache_paged,
            v_cache_paged,
            num_blocks,
        ) = _generate_block_kvcache(
            seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype
Tri Dao's avatar
Tri Dao committed
1961
        )
1962
    cache_seqlens = torch.randint(
Tri Dao's avatar
Tri Dao committed
1963
        0 if new_kv else 1,
1964
        # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
1965
1966
1967
1968
1969
        (
            (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
            if new_kv
            else (seqlen_k + 1)
        ),
1970
1971
1972
1973
        (batch_size,),
        dtype=torch.int32,
        device=device,
    )
Tri Dao's avatar
Tri Dao committed
1974
1975
1976
1977
1978
1979
    if has_leftpad:
        cache_leftpad = torch.cat([torch.randint(0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device)
                                   if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device)
                                   for i in range(batch_size)])
    else:
        cache_leftpad = None
1980
1981
1982
    arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
    cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
    key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
Tri Dao's avatar
Tri Dao committed
1983
1984
1985
1986
    if has_leftpad:
        key_padding_mask = torch.logical_and(
            key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k)
        )
1987
    if has_batch_idx:
1988
1989
1990
        cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
            :batch_size
        ]
1991
1992
    else:
        cache_batch_idx = None
1993
1994
1995
1996
1997
1998
1999
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, None, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
2000
    # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
2001
    if rotary_dim > 0:
Tri Dao's avatar
Tri Dao committed
2002
2003
2004
2005
2006
2007
2008
2009
2010
        angle = (
            torch.rand(
                seqlen_k if paged_kv_block_size is None else num_blocks * paged_kv_block_size,
                rotary_dim // 2,
                device=device,
            )
            * 2
            * math.pi
        )
2011
2012
        cos = torch.cos(angle).to(dtype=dtype)
        sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
2013
        if causal or local:
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
            q_ro = apply_rotary_emb(
                q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
            )
        else:
            q_ro = rearrange(
                apply_rotary_emb(
                    rearrange(q, "b s h d -> b 1 (s h) d"),
                    cos,
                    sin,
                    seqlen_offsets=cache_seqlens,
                    interleaved=rotary_interleaved,
                ),
                "b 1 (s h) d -> b s h d",
                s=seqlen_q,
            )
        # q_ro = q
        k_ro = apply_rotary_emb(
            k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
        )
    else:
        cos, sin = None, None
        q_ro, k_ro = q, k
Tri Dao's avatar
Tri Dao committed
2036
    # k_cache[:, 64:] = -1
2037
2038
2039
2040
2041
2042
    k_cache_ref = (
        k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
    ).clone()
    v_cache_ref = (
        v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
    ).clone()
Tri Dao's avatar
Tri Dao committed
2043
    if new_kv:
2044
2045
2046
        update_mask = torch.logical_and(
            cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
        )
2047
        k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
Tri Dao's avatar
Tri Dao committed
2048
2049
2050
        v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
    k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
    v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
2051
    out = flash_attn_with_kvcache(
2052
        q,
Tri Dao's avatar
Tri Dao committed
2053
2054
        k_cache if paged_kv_block_size is None else k_cache_paged,
        v_cache if paged_kv_block_size is None else v_cache_paged,
2055
2056
        k,
        v,
Tri Dao's avatar
Tri Dao committed
2057
2058
2059
2060
        rotary_cos=cos,
        rotary_sin=sin,
        cache_seqlens=cache_seqlens,
        cache_batch_idx=cache_batch_idx,
Tri Dao's avatar
Tri Dao committed
2061
        cache_leftpad=cache_leftpad,
Tri Dao's avatar
Tri Dao committed
2062
        block_table=block_table,
2063
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2064
        window_size=window_size,
2065
        rotary_interleaved=rotary_interleaved,
2066
        alibi_slopes=alibi_slopes,
2067
        num_splits=num_splits,
2068
    )
Tri Dao's avatar
Tri Dao committed
2069
2070
2071
2072
    # out = flash_attn_with_kvcache(
    #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
    # )
    # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
Tri Dao's avatar
Tri Dao committed
2073
2074
2075
2076
2077
2078
    # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # probs = torch.softmax(qk, dim=-1)
2079
    out_ref, _ = attention_ref(
Tri Dao's avatar
Tri Dao committed
2080
2081
2082
2083
2084
        q_ro,
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2085
        attn_bias,
Tri Dao's avatar
Tri Dao committed
2086
2087
2088
2089
        0.0,
        None,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
2090
        key_leftpad=cache_leftpad,
2091
2092
    )
    out_pt, _ = attention_ref(
2093
        q_ro,
2094
2095
2096
2097
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2098
        attn_bias,
2099
2100
2101
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2102
        window_size=window_size,
2103
2104
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
2105
        key_leftpad=cache_leftpad,
2106
    )
Tri Dao's avatar
Tri Dao committed
2107
2108
2109
2110
2111
2112
2113
2114
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    if new_kv:
Tri Dao's avatar
Tri Dao committed
2115
        if paged_kv_block_size is None:
2116
2117
2118
2119
2120
2121
            k_cache_select = (
                k_cache if not has_batch_idx else k_cache[cache_batch_idx.to(dtype=torch.long)]
            )
            v_cache_select = (
                v_cache if not has_batch_idx else v_cache[cache_batch_idx.to(dtype=torch.long)]
            )
Tri Dao's avatar
Tri Dao committed
2122
2123
        else:
            k_cache_select = rearrange(
2124
                k_cache_paged[block_table.to(dtype=torch.long).flatten()],
Tri Dao's avatar
Tri Dao committed
2125
2126
2127
2128
                "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                b=batch_size,
            )[:, :seqlen_k]
            v_cache_select = rearrange(
2129
                v_cache_paged[block_table.to(dtype=torch.long).flatten()],
Tri Dao's avatar
Tri Dao committed
2130
2131
2132
                "(b nblocks) block_size ... -> b (nblocks block_size) ...",
                b=batch_size,
            )[:, :seqlen_k]
2133
2134
        assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
        assert torch.equal(v_cache_select, v_cache_ref)
2135
2136
    mult = 3 if not alibi else 5
    assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
Tri Dao's avatar
Tri Dao committed
2137

Tri Dao's avatar
Tri Dao committed
2138

2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
def _generate_block_kvcache(seqlen_k, paged_kv_block_size, batch_size, nheads_k, d, device, dtype):
    num_blocks = math.ceil(seqlen_k / paged_kv_block_size) * batch_size * 3
    k_cache_paged = torch.randn(
        num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
    )
    v_cache_paged = torch.randn(
        num_blocks, paged_kv_block_size, nheads_k, d, device=device, dtype=dtype
    )
    block_table = rearrange(
        torch.randperm(num_blocks, dtype=torch.int32, device=device),
        "(b nblocks) -> b nblocks",
        b=batch_size,
    )
    k_cache = rearrange(
        # pytorch 1.12 doesn't have indexing with int32
        k_cache_paged[block_table.to(dtype=torch.long).flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    v_cache = rearrange(
        v_cache_paged[block_table.to(dtype=torch.long).flatten()],
        "(b nblocks) block_size ... -> b (nblocks block_size) ...",
        b=batch_size,
    )[:, :seqlen_k]
    return k_cache, v_cache, block_table, k_cache_paged, v_cache_paged, num_blocks


2166
2167
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
2168
@pytest.mark.parametrize("causal", [False, True])
2169
2170
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
2171
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
2172
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
2173
# @pytest.mark.parametrize('d', [128])
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
2193
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
2194
2195
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2196
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
2197
2198
    # set seed
    torch.random.manual_seed(0)
2199
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
2200
    nheads = 4
2201
2202
2203
2204
2205
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2206
    g = torch.randn_like(out0)
2207
    if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
2208
2209
2210
2211
2212
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
2213
        # Numerical error if we just do any arithmetic on dq
2214
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2215

2216
2217
2218
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2219
2220
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
2221

2222
        if (d <= MAX_HEADDIM_SM8x or dropout_p == 0) or (is_sm80 or is_sm90):
2223
2224
2225
2226
2227
2228
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
2229
            if not dq_equal:
2230
2231
2232
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
2233
            assert dq_equal
2234
2235


Tri Dao's avatar
Tri Dao committed
2236
2237
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2238
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2239
@pytest.mark.parametrize("d", [16, 32, 64])
2240
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
2241
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
2242
2243
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2244
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2245
2246
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
2247
    device = "cuda"
2248
2249
2250
2251
2252
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
2253
2254
2255
2256
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2273
2274
2275
2276
2277
2278
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2279
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
2292
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
2293
@pytest.mark.parametrize("causal", [False, True])
2294
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2295
@pytest.mark.parametrize("d", [64, 128])
2296
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
2297
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
2298
2299
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2300
    """We previously had a bug where we were using the wrong strides of dout, which shows up
2301
2302
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
2303
    device = "cuda"
2304
2305
2306
2307
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
2308
2309
2310
2311
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2328
2329
2330
2331
2332
2333
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2334
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2348
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2349
@pytest.mark.parametrize("d", [16, 32, 64])
2350
2351
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2352
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2353
2354
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
2355
    device = "cuda"
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size, deterministic=True)

    g = torch.randn_like(out)
2429
2430
2431
2432
2433
2434
    dq0, dk0, dv0 = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
    for _ in range(50):
        dq, dk, dv = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
        assert torch.equal(dv, dv0)
        assert torch.equal(dk, dk0)
        assert torch.equal(dq, dq0)
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
        window_size=window_size,
        deterministic=True,
    )

    g = torch.randn_like(out)
2516
2517
2518
2519
2520
2521
    dq0, dk0, dv0 = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
    for _ in range(50):
        dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
        assert torch.equal(dv, dv0)
        assert torch.equal(dk, dk0)
        assert torch.equal(dq, dq0)