test_flash_attn.py 52.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
14
15
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
)
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
16
17
18
from flash_attn.flash_attn_interface import _get_block_size

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
19

Tri Dao's avatar
Tri Dao committed
20

Tri Dao's avatar
Tri Dao committed
21
22
23
24
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
25
26


Tri Dao's avatar
Tri Dao committed
27
28
29
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
30
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
31
    elif mode == "random":
Tri Dao's avatar
Tri Dao committed
32
        lengths = torch.randint(max(1, max_seqlen - 20), max_seqlen, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
33
    elif mode == "third":
Tri Dao's avatar
Tri Dao committed
34
        lengths = torch.randint(max_seqlen // 3, max_seqlen, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
35
36
37
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
38
39
40
    return padding_mask


Tri Dao's avatar
Tri Dao committed
41
42
43
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
44
45
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
46
47
48
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
49
50
51
52
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
53
54
55
56
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
57
58
59

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
60
61
62
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
63
    else:
Tri Dao's avatar
Tri Dao committed
64
65
66
67
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
68
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
69
70
71
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
72
73
74
75
76

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
77
78
79
80
81
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
82
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
83
84
85

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
86
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
87
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
88
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
89
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
90
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
91
        else:
Tri Dao's avatar
Tri Dao committed
92
93
94
95
96
97
98
99
100
101
102
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
103
104
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
105
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
106
107
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
108
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
109
        else:
Tri Dao's avatar
Tri Dao committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
126
127
128
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
129
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
130
        else:
Tri Dao's avatar
Tri Dao committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
147
148


Tri Dao's avatar
Tri Dao committed
149
150
151
152
153
154
155
156
157
158
159
160
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    upcast=True,
    reorder_ops=False,
):
Tri Dao's avatar
Tri Dao committed
161
162
163
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
164
165
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
183
184
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
185
186
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
187
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
188
    else:
Tri Dao's avatar
Tri Dao committed
189
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Tri Dao's avatar
Tri Dao committed
190
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
191
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
192
    if causal:
Tri Dao's avatar
Tri Dao committed
193
194
195
196
        causal_mask = torch.triu(
            torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1
        )
        scores.masked_fill_(causal_mask, float("-inf"))
Tri Dao's avatar
Tri Dao committed
197
198
199
200
201
202
    attention = torch.softmax(scores, dim=-1)
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
203
204
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
205
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
206
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
207
208
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
209
210
211
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
235
236


Tri Dao's avatar
Tri Dao committed
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
258
259
260
261
262
263
264
265
266
267
268


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
269
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
288
289
290
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
291
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
292
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
293
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
294
295
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
296
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
297
298
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
299
300
301
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
302
303
304
def convert_flash_attn_S_to_softmax(
    S, query_padding_mask, key_padding_mask, head_dim, is_dropout, causal=False
):
Tri Dao's avatar
Tri Dao committed
305
306
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
307
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
308
309
310
311
312
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
    """
    seqlen_q, seqlen_k = S.shape[-2:]
    warps_n = 4
Tri Dao's avatar
Tri Dao committed
313
314
315
316
    blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, is_dropout, causal)
    nblocks_n = (seqlen_k + blocksize_n - 1) // blocksize_n
    nblocks_m = (seqlen_q + blocksize_m - 1) // blocksize_m
    mmas_n = (blocksize_n + 16 - 1) // 16
Tri Dao's avatar
Tri Dao committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    S_flat = rearrange(
        S,
        "b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
        blocksize_m=blocksize_m,
        blocksize_n=blocksize_n,
    )
    S_converted = rearrange(
        S_flat,
        "b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
        mmas_n=mmas_n,
        warps_n=warps_n,
        eight=8,
        c0=2,
        c1=2,
        c2=2,
        four=4,
    )
Tri Dao's avatar
Tri Dao committed
334
    if causal:
Tri Dao's avatar
Tri Dao committed
335
336
337
        causal_mask = torch.triu(
            torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=S.device), 1
        )
Tri Dao's avatar
Tri Dao committed
338
        S_converted.masked_fill_(causal_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
339
340
341
342
343
344
345
346
347

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
    seqlen_q_og = query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q
    if query_padding_mask is not None:
        if seqlen_q_og < seqlen_q:
            query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q - seqlen_q_og))
        else:
            query_padding_mask = query_padding_mask[:, :seqlen_q]
Tri Dao's avatar
Tri Dao committed
348
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
349
350
351
352
353
354
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
        if seqlen_k_og < seqlen_k:
            key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k - seqlen_k_og))
        else:
            key_padding_mask = key_padding_mask[:, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
355
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
Tri Dao's avatar
Tri Dao committed
356
357
358
359
360
361
362
363
364
365
366
    if seqlen_q_og < seqlen_q:
        S_converted = S_converted[:, :, :seqlen_q_og, :]
    else:
        S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q))
    if seqlen_k_og < seqlen_k:
        S_converted = S_converted[:, :, :, :seqlen_k_og]
    else:
        S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k))
    return S_converted


Tri Dao's avatar
Tri Dao committed
367
368
369
370
371
372
373
374
375
376
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    is_dropout=False,
    causal=False,
):
Tri Dao's avatar
Tri Dao committed
377
378
379
380
381
382
383
384
385
386
387
388
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
389
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
390
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
391
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
392
    if causal:
Tri Dao's avatar
Tri Dao committed
393
394
395
396
        causal_mask = torch.triu(
            torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1
        )
        scores.masked_fill_(causal_mask, float("-inf"))
Tri Dao's avatar
Tri Dao committed
397
398
    _, block_size_n = _get_block_size(scores.device, head_dim, is_dropout, causal)
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
399
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
400
401
402
403
    lse = torch.logsumexp(lse_block, dim=-1)
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
404
405
406
407
408
409
410
    attn_norm = torch.cat(
        [
            a / rearrange(torch.exp(lse - m), "b h s -> b h s 1")
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
411
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
412
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
413
414
415
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
416
417
418
def get_dropout_fraction(
    dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False
):
Tri Dao's avatar
Tri Dao committed
419
420
421
422
423
424
425
426
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
427
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
428
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
429
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
430
    if causal:
Tri Dao's avatar
Tri Dao committed
431
432
433
        causal_mask = torch.triu(
            torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=dropout_mask.device), 1
        )
Tri Dao's avatar
Tri Dao committed
434
435
        dropped.masked_fill_(causal_mask, False)
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
436
437
438
439
440
441
442
443
444
445
    query_lengths = (
        query_padding_mask.sum(dim=-1)
        if query_padding_mask is not None
        else torch.full((batch_size,), seqlen_q, device=dropout_mask.device)
    )
    key_lengths = (
        key_padding_mask.sum(dim=-1)
        if key_padding_mask is not None
        else torch.full((batch_size,), seqlen_k, device=dropout_mask.device)
    )
Tri Dao's avatar
Tri Dao committed
446
447
448
449
450
451
    if not causal:
        numel_per_batch = query_lengths * key_lengths
    else:
        numel_per_batch = torch.where(
            query_lengths <= key_lengths,
            query_lengths * (query_lengths + 1) / 2,
Tri Dao's avatar
Tri Dao committed
452
            query_lengths * key_lengths - (key_lengths * (key_lengths - 1) / 2),
Tri Dao's avatar
Tri Dao committed
453
454
455
456
        )
    return dropped_total / (numel_per_batch.sum() * nheads)


Tri Dao's avatar
Tri Dao committed
457
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
458
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
459
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
460
# @pytest.mark.parametrize('causal', [True])
Tri Dao's avatar
Tri Dao committed
461
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
462
463
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
464
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
465
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
Tri Dao's avatar
Tri Dao committed
466
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
467
# @pytest.mark.parametrize('seqlen', [97])
Tri Dao's avatar
Tri Dao committed
468
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
469
470
# @pytest.mark.parametrize('dropout_p', [0.17])
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
471
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
472
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
473
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
474
475
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
476
477
    batch_size = 16
    nheads = 9
Tri Dao's avatar
Tri Dao committed
478
479
480
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
481
482
    out, lse, S_dmask = flash_attn_qkvpacked_func(
        qkv, dropout_p, return_attn_probs=True, causal=causal
Tri Dao's avatar
Tri Dao committed
483
    )
Tri Dao's avatar
Tri Dao committed
484
485
486
487
488
489
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
            S_dmask, None, None, d, dropout_p > 0.0, causal=causal
        )[:, :, :seqlen, :seqlen]
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
490
491
492
493
494
495
496
497
498
499
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
            dropout_p > 0.0,
            causal=causal,
        )
Tri Dao's avatar
Tri Dao committed
500
        dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
Tri Dao's avatar
Tri Dao committed
501
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
502
503
504
505
    else:
        dropout_mask = None

    out_ref, attn_ref = attention_qkvpacked_ref(qkv, None, dropout_p, dropout_mask, causal=causal)
Tri Dao's avatar
Tri Dao committed
506
507
508
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv, None, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True
    )
Tri Dao's avatar
Tri Dao committed
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
527
528
529
530
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
531
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
532
533
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
534
535
536
537
538
539

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
540
541
542
543
544
545
546
547
548
549
550
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
551
552
553

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
554
555
556
557
558
559
560
561
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
562
563


Tri Dao's avatar
Tri Dao committed
564
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
565
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
566
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
567
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
568
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
569
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
570
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
571
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
572
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
573
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
574
def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
575
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
576
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
577
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
578
579
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
580
581
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
582
583
584
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
585

Tri Dao's avatar
Tri Dao committed
586
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
587
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
Tri Dao's avatar
Tri Dao committed
588

Tri Dao's avatar
Tri Dao committed
589
590
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
591
    )
Tri Dao's avatar
Tri Dao committed
592
593
594

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
        qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal
Tri Dao's avatar
Tri Dao committed
595
    )
Tri Dao's avatar
Tri Dao committed
596
597
598
599
600
601
602
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
            S_dmask, key_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
        )[:, :, :seqlen, :seqlen]
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
603
604
605
606
607
608
609
610
611
612
613
614
615
616
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
            dropout_p > 0.0,
            causal=causal,
        )
        dropout_fraction = get_dropout_fraction(
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
617
618
619
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
    out_ref, attn_ref = attention_qkvpacked_ref(
        qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        causal=causal,
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
636
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
637
638
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
639
640
641

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
642
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
643
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
644
645
646
647
648
649
650
651
652
653
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
654
655
656

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
657
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
658

Tri Dao's avatar
Tri Dao committed
659
660
661
662
663
664
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
665
666


Tri Dao's avatar
Tri Dao committed
667
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
668
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
669
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
670
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
671
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
672
# @pytest.mark.parametrize('mha_type', ["mha"])
Tri Dao's avatar
Tri Dao committed
673
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
674
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
675
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
676
677
678
679
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
680
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
696
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
697
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
698
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
699
def test_flash_attn_output(seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked):
Tri Dao's avatar
Tri Dao committed
700
701
702
703
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
704
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
705
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
706
707
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
708
709
710
711
712
713
    batch_size = 16
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
714
715
716
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
717
    else:
Tri Dao's avatar
Tri Dao committed
718
719
720
721
722
723
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
            q, kv, dropout_p, return_attn_probs=True, causal=causal
        )
    else:
        out, lse, S_dmask = flash_attn_func(
            q, k, v, dropout_p, return_attn_probs=True, causal=causal
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
            S_dmask, None, None, d, dropout_p > 0.0, causal=causal
        )[:, :, :seqlen_q, :seqlen_k]
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
745
746
747
        attn = normalize_flash_attn_S(
            attn_unnorm, q, k_rep, v_rep, None, None, dropout_p > 0.0, causal=causal
        )
Tri Dao's avatar
Tri Dao committed
748
        dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
Tri Dao's avatar
Tri Dao committed
749
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
750
751
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
752

Tri Dao's avatar
Tri Dao committed
753
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        out_ref, attn_ref = attention_kvpacked_ref(
            q, kv, None, None, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
768
    else:
Tri Dao's avatar
Tri Dao committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
        out_ref, attn_ref = attention_ref(
            q, k, v, None, None, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
789
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
790
791
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
792
793
794
795
796

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
797
798
799
800
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
801
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
802
803
804
805
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
806
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
807
808
809
810
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
811
812
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
840
841
842

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
843
844
845
846
847
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01
Tri Dao's avatar
Tri Dao committed
848

Tri Dao's avatar
Tri Dao committed
849
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
850
851
852
853
854
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()


Tri Dao's avatar
Tri Dao committed
855
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
856
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
857
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
858
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
859
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
860
# @pytest.mark.parametrize('mha_type', ["mqa"])
Tri Dao's avatar
Tri Dao committed
861
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
862
# @pytest.mark.parametrize('causal', [True])
Tri Dao's avatar
Tri Dao committed
863
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
864
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
865
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
881
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
882
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
883
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
884
885
886
887
888
889
890
def test_flash_attn_varlen_output(
    seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
891
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
892
    device = "cuda"
893
894
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
895
896
897
898
899
900
    batch_size = 16
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
901
902
903
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
904
    else:
Tri Dao's avatar
Tri Dao committed
905
906
907
908
909
910
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
911

Tri Dao's avatar
Tri Dao committed
912
913
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
914
915
916
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
917
918
919
920
921
922
923
924
925
926
927
928
929
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
930
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
931
932
933
934
935
936
937
938
939
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            return_attn_probs=True,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
940
941
        )
    else:
Tri Dao's avatar
Tri Dao committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
957
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
958
959
960
961
962
963
964
965
966
967
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            return_attn_probs=True,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
968
        )
Tri Dao's avatar
Tri Dao committed
969
970
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
971
972
        S_dmask_converted = convert_flash_attn_S_to_softmax(
            S_dmask, query_padding_mask, key_padding_mask, d, dropout_p > 0.0, causal=causal
Tri Dao's avatar
Tri Dao committed
973
974
975
976
977
978
979
980
981
        )[:, :, :seqlen_q, :seqlen_k]
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
            dropout_p > 0.0,
            causal=causal,
        )
        dropout_fraction = get_dropout_fraction(
            dropout_mask, query_padding_mask, key_padding_mask, causal=causal
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
996
997
998
999
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
        out_ref, attn_ref = attention_kvpacked_ref(
            q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1014
    else:
Tri Dao's avatar
Tri Dao committed
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        out_ref, attn_ref = attention_ref(
            q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1035
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1036
1037
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1038
1039
1040
1041

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1042
1043
1044
1045
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1046
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1047
1048
1049
1050
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1051
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1052
1053
1054
1055
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1056
1057
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1058
1059
1060
1061
1062
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1063
1064
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1075
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1088
1089
1090

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1091
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1092

Tri Dao's avatar
Tri Dao committed
1093
1094
1095
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
        assert abs(dropout_fraction - dropout_p) <= 0.01
Tri Dao's avatar
Tri Dao committed
1096

Tri Dao's avatar
Tri Dao committed
1097
1098
1099
1100
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1101

1102

Tri Dao's avatar
Tri Dao committed
1103
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
1104
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1105
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1106
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1107
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
Tri Dao's avatar
Tri Dao committed
1108
@pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
1109
# @pytest.mark.parametrize('d', [128])
Tri Dao's avatar
Tri Dao committed
1110
# @pytest.mark.parametrize('seqlen', [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
1111
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
Tri Dao's avatar
Tri Dao committed
1112
@pytest.mark.parametrize("seqlen", [128])
Tri Dao's avatar
Tri Dao committed
1113
# @pytest.mark.parametrize('dropout_p', [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
1114
@pytest.mark.parametrize("dropout_p", [0.0])
Tri Dao's avatar
Tri Dao committed
1115
def test_flash_attn_race_condition(seqlen, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1116
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
1117
1118
    # set seed
    torch.random.manual_seed(0)
1119
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
1120
    nheads = 4
Tri Dao's avatar
Tri Dao committed
1121
1122
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
Tri Dao's avatar
Tri Dao committed
1123
    )
Tri Dao's avatar
Tri Dao committed
1124
    out0, lse0, _ = flash_attn_qkvpacked_func(qkv, dropout_p, return_attn_probs=True, causal=causal)
Tri Dao's avatar
Tri Dao committed
1125
    g = torch.randn_like(out0)
1126
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1127
        (dqkv0,) = torch.autograd.grad(out0, qkv, g)
1128
1129
        # Numerical error if we just do any arithmetic on dq
        dq_atol = 2 * ((dqkv0[:, :, 0] + 0.3 - 0.3) - dqkv0[:, :, 0]).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1130

1131
    for i in range(200):
Tri Dao's avatar
Tri Dao committed
1132
1133
1134
1135
1136
1137
        torch.random.manual_seed(0)
        out, lse, S_dmask = flash_attn_qkvpacked_func(
            qkv, dropout_p, return_attn_probs=True, causal=causal
        )
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
1138

1139
        if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1140
            (dqkv,) = torch.autograd.grad(out, qkv, g)
1141
1142
1143
1144
            dq_equal = torch.allclose(dqkv[:, :, 0], dqkv0[:, :, 0], atol=dq_atol)
            if not dq_equal:
                dq0 = dqkv0[:, :, 0]
                dq = dqkv[:, :, 0]
Tri Dao's avatar
Tri Dao committed
1145
1146
1147
                print(
                    f"Iter {i}, {dq_atol = }, dQ max diff: {(dqkv[:, :, 0] - dqkv0[:, :, 0]).abs().max().item()}"
                )
1148
            assert dq_equal
Tri Dao's avatar
Tri Dao committed
1149
1150
            assert torch.equal(dqkv[:, :, 1], dqkv0[:, :, 1])
            assert torch.equal(dqkv[:, :, 2], dqkv0[:, :, 2])
1151
1152


Tri Dao's avatar
Tri Dao committed
1153
1154
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
1155
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1156
@pytest.mark.parametrize("d", [16, 32, 64])
1157
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
1158
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
1159
1160
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1161
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
1162
1163
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
1164
    device = "cuda"
1165
1166
1167
1168
1169
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
1170
1171
1172
1173
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
1190
1191
1192
1193
1194
1195
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
1196
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1209
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1210
@pytest.mark.parametrize("causal", [False, True])
1211
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1212
@pytest.mark.parametrize("d", [64, 128])
1213
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1214
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
1215
1216
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1217
    """We previously had a bug where we were using the wrong strides of dout, which shows up
1218
1219
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
1220
    device = "cuda"
1221
1222
1223
1224
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
1225
1226
1227
1228
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
1245
1246
1247
1248
1249
1250
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
1251
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
1265
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1266
@pytest.mark.parametrize("d", [16, 32, 64])
1267
1268
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1269
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
1270
1271
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
1272
    device = "cuda"
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()