"...tools/openwebtext/README.md" did not exist on "aebde649e30016aa33b2e1345cb22210a2e49b04"
test_flash_attn.py 90.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
Tri Dao's avatar
Tri Dao committed
14
    flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
15
)
16
from flash_attn.bert_padding import pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
17
from flash_attn.flash_attn_interface import _get_block_size_n
18
from flash_attn.layers.rotary import apply_rotary_emb
Tri Dao's avatar
Tri Dao committed
19
20

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
21

Tri Dao's avatar
Tri Dao committed
22

Tri Dao's avatar
Tri Dao committed
23
24
25
26
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
27
28


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def attn_bias_from_alibi_slopes(
    slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
    batch, nheads = slopes.shape
    device = slopes.device
    slopes = rearrange(slopes, "b h -> b h 1 1")
    if causal:
        return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
    else:
        row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
        col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
        sk = (
            seqlen_k
            if key_padding_mask is None
            else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        sq = (
            seqlen_q
            if query_padding_mask is None
            else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        relative_pos = torch.abs(row_idx + sk - sq - col_idx)
        return -slopes * relative_pos.to(dtype=slopes.dtype)


Tri Dao's avatar
Tri Dao committed
54
55
56
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
57
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
58
    elif mode == "random":
59
60
61
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
62
    elif mode == "third":
63
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
64
65
66
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
67
68
69
    return padding_mask


Tri Dao's avatar
Tri Dao committed
70
71
72
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
73
74
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
75
76
77
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
78
79
80
81
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
82
83
84
85
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
86
87
88

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
89
90
91
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
92
    else:
Tri Dao's avatar
Tri Dao committed
93
94
95
96
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
97
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
98
99
100
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
101
102
103
104
105

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
111
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
112
113
114

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
115
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
116
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
117
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
118
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
119
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
120
        else:
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
129
130
131
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
132
133
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
134
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
135
136
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
137
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
138
        else:
Tri Dao's avatar
Tri Dao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
155
156
157
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
158
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
159
        else:
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
176
177


Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184
def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
185
):
186
187
188
189
190
191
192
193
194
195
196
197
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
Tri Dao's avatar
Tri Dao committed
198
199
200
201
202
203
204
205
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )
206
207


Tri Dao's avatar
Tri Dao committed
208
209
210
211
212
213
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
214
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
215
216
217
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
218
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
219
220
221
    upcast=True,
    reorder_ops=False,
):
Tri Dao's avatar
Tri Dao committed
222
223
224
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
225
226
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
227
228
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
229
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
230
231
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
232
233
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
Tri Dao's avatar
Tri Dao committed
234
235
236
237
238
239
240
241
242
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
Tri Dao's avatar
Tri Dao committed
243
244
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
245
246
247
248
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
249
250
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
251
252
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
253
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
254
    else:
Tri Dao's avatar
Tri Dao committed
255
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Tri Dao's avatar
Tri Dao committed
256
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
257
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
258
259
260
261
262
263
264
265
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
266
        )
Tri Dao's avatar
Tri Dao committed
267
        scores.masked_fill_(local_mask, float("-inf"))
268
269
270
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
Tri Dao's avatar
Tri Dao committed
271
272
273
274
275
276
277
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
278
279
280
281
282
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
283
284
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
285
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
286
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
287
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
288
289
290
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
291
292
293
294
295
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
296
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
297
298
299
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
300
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
301
302
303
304
305
306
307
308
309
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
310
        attn_bias,
Tri Dao's avatar
Tri Dao committed
311
312
313
314
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
315
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
316
317
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
318
319


Tri Dao's avatar
Tri Dao committed
320
321
322
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
323
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
324
325
326
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
327
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
328
329
330
331
332
333
334
335
336
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
337
        attn_bias,
Tri Dao's avatar
Tri Dao committed
338
339
340
341
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
342
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
343
344
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
345
346
347
348
349
350
351
352
353
354
355


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
356
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
375
376
377
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
378
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
379
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
380
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
381
382
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
383
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
384
385
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
386
387
388
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
389
def convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
390
391
392
393
394
395
396
397
398
    S,
    seqlen_q,
    seqlen_k,
    query_padding_mask,
    key_padding_mask,
    head_dim,
    is_dropout,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
399
):
Tri Dao's avatar
Tri Dao committed
400
401
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
402
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
403
404
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
405
    """
Tri Dao's avatar
Tri Dao committed
406
407
    if causal:
        window_size = (window_size[0], 0)
408
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
409
    S_converted = S
Tri Dao's avatar
Tri Dao committed
410
411
412
413
414
415
416
417
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            S.device,
Tri Dao's avatar
Tri Dao committed
418
        )
Tri Dao's avatar
Tri Dao committed
419
420
        local_mask = F.pad(
            local_mask,
421
422
423
            (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
            value=True,
        )
Tri Dao's avatar
Tri Dao committed
424
        S_converted = S_converted.masked_fill(local_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
425
426
427

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
428
429
430
    seqlen_q_og = (
        query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
    )
Tri Dao's avatar
Tri Dao committed
431
    if query_padding_mask is not None:
432
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
433
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
434
435
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
436
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
437
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
438
439
440
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
441
442


Tri Dao's avatar
Tri Dao committed
443
444
445
446
447
448
449
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
450
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
451
452
    is_dropout=False,
    causal=False,
Tri Dao's avatar
Tri Dao committed
453
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
454
):
Tri Dao's avatar
Tri Dao committed
455
456
457
458
459
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
460
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
461
462
463
464
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
Tri Dao's avatar
Tri Dao committed
465
466
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
467
468
469
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
470
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
471
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
472
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
473
474
475
476
477
478
479
480
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
481
        )
Tri Dao's avatar
Tri Dao committed
482
        scores.masked_fill_(local_mask, float("-inf"))
483
484
    if attn_bias is not None:
        scores = scores + attn_bias.to(dtype=scores.dtype)
Tri Dao's avatar
Tri Dao committed
485
    block_size_n = _get_block_size_n(scores.device, head_dim, is_dropout, causal)
Tri Dao's avatar
Tri Dao committed
486
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
487
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
488
    lse = torch.logsumexp(lse_block, dim=-1)
489
490
491
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
492
493
494
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
495
496
    attn_norm = torch.cat(
        [
497
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
498
499
500
501
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
502
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
503
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
504
505
506
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
507
def get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
508
509
510
511
512
    dropout_mask,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
513
):
Tri Dao's avatar
Tri Dao committed
514
515
516
517
518
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
Tri Dao's avatar
Tri Dao committed
519
520
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
521
522
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
Tri Dao's avatar
Tri Dao committed
523
    valid = torch.ones_like(dropout_mask)
Tri Dao's avatar
Tri Dao committed
524
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
525
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
526
        valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
527
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
528
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
529
530
531
532
533
534
535
536
537
        valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            dropout_mask.device,
Tri Dao's avatar
Tri Dao committed
538
        )
Tri Dao's avatar
Tri Dao committed
539
540
        dropped.masked_fill_(local_mask, False)
        valid.masked_fill_(local_mask, False)
Tri Dao's avatar
Tri Dao committed
541
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
542
    return dropped.sum() / valid.sum()
Tri Dao's avatar
Tri Dao committed
543
544


Tri Dao's avatar
Tri Dao committed
545
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
546
# @pytest.mark.parametrize("dtype", [torch.float16])
547
548
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
549
@pytest.mark.parametrize("alibi", [False, True])
550
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
551
@pytest.mark.parametrize("local", [False, True])
552
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
553
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
554
# @pytest.mark.parametrize("causal", [False])
Tri Dao's avatar
Tri Dao committed
555
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
556
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
557
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
558
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
559
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
560
@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
561
# @pytest.mark.parametrize("seqlen", [512])
Tri Dao's avatar
Tri Dao committed
562
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
563
# @pytest.mark.parametrize("dropout_p", [0.0])
564
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
565
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
566
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
567
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
568
569
    # set seed
    torch.random.manual_seed(0)
570
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
571
    nheads = 9
Tri Dao's avatar
Tri Dao committed
572
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
573
574
575
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
576
577
578
579
580
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
581
    out, lse, S_dmask = flash_attn_qkvpacked_func(
582
583
584
585
586
        qkv,
        dropout_p,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
587
        deterministic=deterministic,
588
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
589
    )
Tri Dao's avatar
Tri Dao committed
590
591
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
592
593
594
595
596
597
598
599
600
            S_dmask,
            seqlen,
            seqlen,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
601
        )
Tri Dao's avatar
Tri Dao committed
602
603
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
604
605
606
607
608
609
610
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
611
            attn_bias,
Tri Dao's avatar
Tri Dao committed
612
613
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
614
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
615
        )
Tri Dao's avatar
Tri Dao committed
616
617
618
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
619
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
620
621
622
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
623
    out_ref, attn_ref = attention_qkvpacked_ref(
624
        qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
625
    )
Tri Dao's avatar
Tri Dao committed
626
    out_pt, attn_pt = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
627
628
        qkv,
        None,
629
        attn_bias,
Tri Dao's avatar
Tri Dao committed
630
631
632
633
634
635
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
636
    )
Tri Dao's avatar
Tri Dao committed
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
655
656
657
658
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
659
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
660
661
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
662
663
664
665
666
667

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
668
669
670
671
672
673
674
675
676
677
678
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
679
680
681

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
682
683
684
685
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
686
687
688
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
689
690
691

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
692
693


Tri Dao's avatar
Tri Dao committed
694
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
695
# @pytest.mark.parametrize('dtype', [torch.float16])
696
697
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
698
699
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
700
701
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
702
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
703
# @pytest.mark.parametrize('causal', [False])
704
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
705
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
706
# @pytest.mark.parametrize('d', [64])
707
@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
708
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
709
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
710
# @pytest.mark.parametrize('dropout_p', [0.0])
711
def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
712
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
713
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
714
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
715
716
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
717
718
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
719
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
720
721
722
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
723

Tri Dao's avatar
Tri Dao committed
724
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
725
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
726
727
728
729
730
731
732
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
733

Tri Dao's avatar
Tri Dao committed
734
735
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
736
    )
Tri Dao's avatar
Tri Dao committed
737
738

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
739
740
741
742
743
744
        qkv_unpad,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        causal=causal,
        window_size=window_size,
745
        alibi_slopes=alibi_slopes,
746
        deterministic=deterministic,
Tri Dao's avatar
Tri Dao committed
747
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
748
    )
Tri Dao's avatar
Tri Dao committed
749
750
751
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
752
753
754
755
756
757
758
759
            S_dmask,
            seqlen,
            seqlen,
            key_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
760
            window_size=window_size,
761
        )
Tri Dao's avatar
Tri Dao committed
762
763
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
764
765
766
767
768
769
770
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
771
            attn_bias,
Tri Dao's avatar
Tri Dao committed
772
773
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
774
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
775
776
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
777
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
778
779
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
780
781
782
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
783
    out_ref, attn_ref = attention_qkvpacked_ref(
784
785
786
787
788
789
790
        qkv,
        key_padding_mask,
        attn_bias,
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
791
792
793
794
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
795
        attn_bias,
Tri Dao's avatar
Tri Dao committed
796
797
798
        dropout_p,
        dropout_mask,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
799
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
800
801
802
803
804
805
806
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
807
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
808
809
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
810
811
812

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
813
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
814
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
815
816
817
818
819
820
821
822
823
824
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
825
826
827

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
828
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
829

Tri Dao's avatar
Tri Dao committed
830
831
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
832
833
834
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
835
836
837

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
838
839


Tri Dao's avatar
Tri Dao committed
840
@pytest.mark.parametrize("kvpacked", [True, False])
841
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
842
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
843
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
844
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
845
# @pytest.mark.parametrize("mha_type", ["mha"])
846
847
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
848
849
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
850
851
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
852
@pytest.mark.parametrize("causal", [False, True])
853
# @pytest.mark.parametrize("causal", [True])
854
@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
855
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
856
857
858
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
859
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
875
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
876
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
877
# @pytest.mark.parametrize("dropout_p", [0.17])
Tri Dao's avatar
Tri Dao committed
878
def test_flash_attn_output(
879
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
880
):
Tri Dao's avatar
Tri Dao committed
881
882
883
884
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
885
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
886
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
887
888
    # set seed
    torch.random.manual_seed(0)
889
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
890
891
892
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
893
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
894
895
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
896
897
898
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
899
    else:
Tri Dao's avatar
Tri Dao committed
900
901
902
903
904
905
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
906
907
908
909
910
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
911
912
913

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
914
915
916
917
918
919
            q,
            kv,
            dropout_p,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
920
            deterministic=deterministic,
921
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
922
923
924
        )
    else:
        out, lse, S_dmask = flash_attn_func(
925
926
927
928
929
930
931
            q,
            k,
            v,
            dropout_p,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
932
            deterministic=deterministic,
933
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
934
935
936
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
937
938
939
940
941
942
943
944
945
            S_dmask,
            seqlen_q,
            seqlen_k,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
946
        )
Tri Dao's avatar
Tri Dao committed
947
948
949
950
951
952
953
954
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
955
        attn = normalize_flash_attn_S(
Tri Dao's avatar
Tri Dao committed
956
957
958
959
960
961
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            None,
            None,
962
            attn_bias,
Tri Dao's avatar
Tri Dao committed
963
964
965
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
966
        )
Tri Dao's avatar
Tri Dao committed
967
968
969
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
970
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
971
972
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
973

Tri Dao's avatar
Tri Dao committed
974
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
975
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
976
977
978
979
            q,
            kv,
            None,
            None,
980
            attn_bias,
Tri Dao's avatar
Tri Dao committed
981
982
983
984
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
985
986
987
988
989
990
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
991
            attn_bias,
Tri Dao's avatar
Tri Dao committed
992
993
994
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
995
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
996
997
998
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
999
    else:
Tri Dao's avatar
Tri Dao committed
1000
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1001
1002
1003
1004
1005
            q,
            k,
            v,
            None,
            None,
1006
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1007
1008
1009
1010
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1011
1012
1013
1014
1015
1016
1017
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
1018
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1019
1020
1021
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1022
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1023
1024
1025
1026
1027
1028
1029
1030
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1031
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1032
1033
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1034
1035
1036
1037
1038

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1039
1040
1041
1042
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1043
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
1044
1045
1046
1047
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1048
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1049
1050
1051
1052
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1053
1054
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1082
1083
1084

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1085
1086
1087
1088
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1089
1090
1091
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1092

Tri Dao's avatar
Tri Dao committed
1093
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1094
1095
1096
1097
1098
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()


Tri Dao's avatar
Tri Dao committed
1099
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
1100
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
1101
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1102
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1103
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
1104
# @pytest.mark.parametrize('mha_type', ["mqa"])
1105
1106
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1107
1108
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1109
1110
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1111
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1112
# @pytest.mark.parametrize('causal', [True])
1113
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1114
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1115
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1116
1117
1118
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
1119
        (1, 147),
Tri Dao's avatar
Tri Dao committed
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
1132
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
1133
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
1134
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
1135
def test_flash_attn_varlen_output(
1136
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
1137
1138
1139
1140
1141
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
1142
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
1143
    device = "cuda"
1144
1145
    # set seed
    torch.random.manual_seed(0)
1146
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
1147
1148
1149
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1150
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1151
1152
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1153
1154
1155
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
1156
    else:
Tri Dao's avatar
Tri Dao committed
1157
1158
1159
1160
1161
1162
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
1163

Tri Dao's avatar
Tri Dao committed
1164
1165
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
1166
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
1167
1168
1169
1170
1171
1172
1173
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1174
1175

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
1189
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
1190
1191
1192
1193
1194
1195
1196
1197
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1198
            window_size=window_size,
1199
            alibi_slopes=alibi_slopes,
1200
            deterministic=deterministic,
1201
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1202
1203
        )
    else:
Tri Dao's avatar
Tri Dao committed
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
1219
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
1220
1221
1222
1223
1224
1225
1226
1227
1228
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1229
            window_size=window_size,
1230
            alibi_slopes=alibi_slopes,
1231
            deterministic=deterministic,
1232
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1233
        )
Tri Dao's avatar
Tri Dao committed
1234
1235
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1236
        S_dmask_converted = convert_flash_attn_S_to_softmax(
1237
1238
1239
1240
1241
1242
1243
1244
            S_dmask,
            seqlen_q,
            seqlen_k,
            query_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1245
            window_size=window_size,
1246
        )
Tri Dao's avatar
Tri Dao committed
1247
1248
1249
1250
1251
1252
1253
1254
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1255
1256
1257
1258
1259
1260
1261
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
1262
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1263
1264
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1265
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1266
1267
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
1268
1269
1270
1271
1272
            dropout_mask,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1273
1274
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1275
1276
1277
1278
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1279
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1280
1281
1282
1283
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1284
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1285
1286
1287
1288
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1289
1290
1291
1292
1293
1294
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1295
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1296
1297
1298
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1299
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1300
1301
1302
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1303
    else:
Tri Dao's avatar
Tri Dao committed
1304
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1305
1306
1307
1308
1309
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1310
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1311
1312
1313
1314
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1315
1316
1317
1318
1319
1320
1321
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1322
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1323
1324
1325
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1326
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1327
1328
1329
1330
1331
1332
1333
1334
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1335
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1336
1337
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1338
1339
1340
1341

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1342
1343
1344
1345
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1346
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1347
1348
1349
1350
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1351
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1352
1353
1354
1355
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1356
1357
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1358
1359
1360
1361
1362
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1363
1364
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1375
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1388
1389
1390

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1391
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1392

Tri Dao's avatar
Tri Dao committed
1393
1394
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1395
1396
1397
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1398

Tri Dao's avatar
Tri Dao committed
1399
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1400
1401
1402
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1403

1404

Tri Dao's avatar
Tri Dao committed
1405
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1406
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1407
1408
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1409
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1410
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1433
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1445
    batch_size = 8
1446
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1447
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1448
1449
1450
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1451
1452
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
    out_ref, attn_ref = attention_ref(
1453
        q, k, v, None, None, None, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1454
    )
1455
1456
1457
1458
1459
1460
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1461
        None,
1462
1463
1464
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1465
        window_size=window_size,
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1518
1519
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1520
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1521
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1522
1523
1524
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
1525
# @pytest.mark.parametrize("d", [64])
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1544
def test_flash_attn_varlen_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1556
    batch_size = 8
1557
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1558
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1589
        window_size=window_size,
1590
1591
1592
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1593
1594
1595
1596
1597
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1598
        None,
Tri Dao's avatar
Tri Dao committed
1599
1600
1601
1602
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1603
1604
1605
1606
1607
1608
1609
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1610
        None,
1611
1612
1613
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1614
        window_size=window_size,
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


Tri Dao's avatar
Tri Dao committed
1668
1669
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
1670
1671
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1672
1673
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1674
@pytest.mark.parametrize("local", [False, True])
1675
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1676
1677
1678
1679
1680
1681
1682
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1683
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
1684
1685
1686
1687
1688
1689
1690
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (3, 1024),
        (1, 339),
1691
        (64, 800),
Tri Dao's avatar
Tri Dao committed
1692
1693
1694
1695
1696
1697
1698
1699
1700
        (3, 799),
        (64, 2048),
        (16, 20000),
        (16, 100000),
        (128, 128),
        (256, 256),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1701
def test_flash_attn_splitkv(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
1702
1703
1704
1705
1706
1707
1708
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 1
    nheads = 12
Tri Dao's avatar
Tri Dao committed
1709
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1710
1711
1712
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
1713
1714
1715
1716
1717
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1718
    out, lse, _ = flash_attn_func(
1719
1720
1721
1722
1723
1724
1725
        q,
        k,
        v,
        0.0,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
1726
        deterministic=deterministic,
1727
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1728
1729
    )
    out_ref, attn_ref = attention_ref(
1730
        q, k, v, None, None, attn_bias, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1731
    )
Tri Dao's avatar
Tri Dao committed
1732
1733
1734
1735
1736
1737
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1738
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1739
1740
1741
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1742
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1787
    mult = 2 if not alibi else 8
Tri Dao's avatar
Tri Dao committed
1788
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1789
1790
1791
        assert (dq - dq_ref).abs().max().item() <= mult * (dq_pt - dq_ref).abs().max().item() + 2e-4
        assert (dk - dk_ref).abs().max().item() <= mult * (dk_pt - dk_ref).abs().max().item() + 2e-4
        assert (dv - dv_ref).abs().max().item() <= mult * (dv_pt - dv_ref).abs().max().item() + 2e-4
Tri Dao's avatar
Tri Dao committed
1792

1793

1794
1795
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1796
@pytest.mark.parametrize("num_splits", [1, 0])
1797
# @pytest.mark.parametrize("num_splits", [1])
Tri Dao's avatar
Tri Dao committed
1798
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
1799
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
1800
@pytest.mark.parametrize("new_kv", [False, True])
1801
1802
1803
# @pytest.mark.parametrize("new_kv", [False])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1804
@pytest.mark.parametrize("local", [False, True])
1805
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1806
@pytest.mark.parametrize("causal", [False, True])
1807
# @pytest.mark.parametrize("causal", [False])
1808
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
1809
1810
1811
1812
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
1813
# @pytest.mark.parametrize("rotary_fraction", [0.0])
1814
@pytest.mark.parametrize("has_batch_idx", [False, True])
1815
# @pytest.mark.parametrize("has_batch_idx", [False])
Tri Dao's avatar
Tri Dao committed
1816
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1817
1818
1819
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1820
# @pytest.mark.parametrize("d", [128])
Tri Dao's avatar
Tri Dao committed
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        (1, 128 * 1024),
        (16, 128 * 1024),
        (128, 128),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1838
def test_flash_attn_kvcache(
1839
1840
1841
    seqlen_q,
    seqlen_k,
    d,
1842
    has_batch_idx,
1843
1844
1845
1846
    rotary_fraction,
    rotary_interleaved,
    seqlen_new_eq_seqlen_q,
    causal,
Tri Dao's avatar
Tri Dao committed
1847
    local,
1848
    alibi,
1849
1850
1851
1852
    new_kv,
    mha_type,
    num_splits,
    dtype,
1853
):
Tri Dao's avatar
Tri Dao committed
1854
1855
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
1856
1857
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1858
1859
1860
1861
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
1862
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
Tri Dao's avatar
Tri Dao committed
1863
    nheads = 6
1864
1865
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
Tri Dao's avatar
Tri Dao committed
1866
1867
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1868
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1869
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
1870
    seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
Tri Dao's avatar
Tri Dao committed
1871
    if new_kv:
1872
1873
        k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
        v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1874
1875
    else:
        k, v = None, None
1876
1877
    k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
    v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
1878
1879
    cache_seqlens = torch.randint(
        0,
1880
        # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
Tri Dao's avatar
Tri Dao committed
1881
        (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
1882
1883
        if new_kv
        else (seqlen_k + 1),
1884
1885
1886
1887
        (batch_size,),
        dtype=torch.int32,
        device=device,
    )
1888
1889
1890
    arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
    cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
    key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
1891
    if has_batch_idx:
1892
1893
1894
        cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
            :batch_size
        ]
1895
1896
    else:
        cache_batch_idx = None
1897
1898
1899
1900
1901
1902
1903
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, None, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1904
    # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
1905
1906
1907
1908
    if rotary_dim > 0:
        angle = torch.rand(seqlen_k, rotary_dim // 2, device=device) * 2 * math.pi
        cos = torch.cos(angle).to(dtype=dtype)
        sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1909
        if causal or local:
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
            q_ro = apply_rotary_emb(
                q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
            )
        else:
            q_ro = rearrange(
                apply_rotary_emb(
                    rearrange(q, "b s h d -> b 1 (s h) d"),
                    cos,
                    sin,
                    seqlen_offsets=cache_seqlens,
                    interleaved=rotary_interleaved,
                ),
                "b 1 (s h) d -> b s h d",
                s=seqlen_q,
            )
        # q_ro = q
        k_ro = apply_rotary_emb(
            k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
        )
    else:
        cos, sin = None, None
        q_ro, k_ro = q, k
Tri Dao's avatar
Tri Dao committed
1932
    # k_cache[:, 64:] = -1
1933
1934
    k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
    v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
Tri Dao's avatar
Tri Dao committed
1935
    if new_kv:
1936
1937
1938
        update_mask = torch.logical_and(
            cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
        )
1939
        k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
Tri Dao's avatar
Tri Dao committed
1940
1941
1942
        v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
    k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
    v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
1943
    out = flash_attn_with_kvcache(
1944
1945
1946
1947
1948
1949
1950
1951
        q,
        k_cache,
        v_cache,
        k,
        v,
        cos,
        sin,
        cache_seqlens,
1952
        cache_batch_idx,
1953
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1954
        window_size=window_size,
1955
        rotary_interleaved=rotary_interleaved,
1956
        alibi_slopes=alibi_slopes,
1957
        num_splits=num_splits,
1958
    )
Tri Dao's avatar
Tri Dao committed
1959
1960
1961
1962
    # out = flash_attn_with_kvcache(
    #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
    # )
    # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
Tri Dao's avatar
Tri Dao committed
1963
1964
1965
1966
1967
1968
    # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # probs = torch.softmax(qk, dim=-1)
1969
    out_ref, _ = attention_ref(
Tri Dao's avatar
Tri Dao committed
1970
1971
1972
1973
1974
        q_ro,
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
1975
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1976
1977
1978
1979
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1980
1981
    )
    out_pt, _ = attention_ref(
1982
        q_ro,
1983
1984
1985
1986
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
1987
        attn_bias,
1988
1989
1990
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1991
        window_size=window_size,
1992
1993
1994
        upcast=False,
        reorder_ops=True,
    )
Tri Dao's avatar
Tri Dao committed
1995
1996
1997
1998
1999
2000
2001
2002
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    if new_kv:
2003
2004
2005
2006
        k_cache_select = k_cache if not has_batch_idx else k_cache[cache_batch_idx]
        v_cache_select = v_cache if not has_batch_idx else v_cache[cache_batch_idx]
        assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
        assert torch.equal(v_cache_select, v_cache_ref)
2007
2008
    mult = 3 if not alibi else 5
    assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
Tri Dao's avatar
Tri Dao committed
2009

Tri Dao's avatar
Tri Dao committed
2010

2011
2012
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
2013
@pytest.mark.parametrize("causal", [False, True])
2014
2015
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
2016
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
2017
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
2018
# @pytest.mark.parametrize('d', [128])
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
2038
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
2039
2040
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2041
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
2042
2043
    # set seed
    torch.random.manual_seed(0)
2044
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
2045
    nheads = 4
2046
2047
2048
2049
2050
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2051
    g = torch.randn_like(out0)
2052
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
2053
2054
2055
2056
2057
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
2058
        # Numerical error if we just do any arithmetic on dq
2059
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2060

2061
2062
2063
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2064
2065
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
2066

2067
        if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
2068
2069
2070
2071
2072
2073
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
2074
            if not dq_equal:
2075
2076
2077
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
2078
            assert dq_equal
2079
2080


Tri Dao's avatar
Tri Dao committed
2081
2082
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2083
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2084
@pytest.mark.parametrize("d", [16, 32, 64])
2085
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
2086
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
2087
2088
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2089
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2090
2091
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
2092
    device = "cuda"
2093
2094
2095
2096
2097
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
2098
2099
2100
2101
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2118
2119
2120
2121
2122
2123
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2124
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
2137
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
2138
@pytest.mark.parametrize("causal", [False, True])
2139
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2140
@pytest.mark.parametrize("d", [64, 128])
2141
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
2142
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
2143
2144
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2145
    """We previously had a bug where we were using the wrong strides of dout, which shows up
2146
2147
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
2148
    device = "cuda"
2149
2150
2151
2152
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
2153
2154
2155
2156
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2173
2174
2175
2176
2177
2178
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2179
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2193
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2194
@pytest.mark.parametrize("d", [16, 32, 64])
2195
2196
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2197
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2198
2199
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
2200
    device = "cuda"
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size, deterministic=True)

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        dq0, dk0, dv0 = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
        for _ in range(50):
            dq, dk, dv = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
            assert torch.equal(dq, dq0)




@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
        window_size=window_size,
        deterministic=True,
    )

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
        for _ in range(50):
            dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
            assert torch.equal(dv, dv)
            assert torch.equal(dk, dk)
            assert torch.equal(dq, dq)