test_flash_attn.py 79.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
Tri Dao's avatar
Tri Dao committed
14
    flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
15
)
16
from flash_attn.bert_padding import pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
17
from flash_attn.flash_attn_interface import _get_block_size
18
from flash_attn.layers.rotary import apply_rotary_emb
Tri Dao's avatar
Tri Dao committed
19
20

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
21

Tri Dao's avatar
Tri Dao committed
22

Tri Dao's avatar
Tri Dao committed
23
24
25
26
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
27
28


Tri Dao's avatar
Tri Dao committed
29
30
31
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
32
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
33
    elif mode == "random":
34
35
36
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
37
    elif mode == "third":
38
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
39
40
41
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
42
43
44
    return padding_mask


Tri Dao's avatar
Tri Dao committed
45
46
47
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
48
49
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
50
51
52
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
53
54
55
56
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
57
58
59
60
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
61
62
63

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
64
65
66
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
67
    else:
Tri Dao's avatar
Tri Dao committed
68
69
70
71
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
72
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
73
74
75
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
76
77
78
79
80

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
81
82
83
84
85
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
86
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
87
88
89

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
90
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
91
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
92
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
93
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
94
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
95
        else:
Tri Dao's avatar
Tri Dao committed
96
97
98
99
100
101
102
103
104
105
106
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
107
108
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
109
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
110
111
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
112
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
113
        else:
Tri Dao's avatar
Tri Dao committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
130
131
132
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
133
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
134
        else:
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
151
152


Tri Dao's avatar
Tri Dao committed
153
154
155
156
157
158
159
def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
160
):
161
162
163
164
165
166
167
168
169
170
171
172
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
Tri Dao's avatar
Tri Dao committed
173
174
175
176
177
178
179
180
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )
181
182


Tri Dao's avatar
Tri Dao committed
183
184
185
186
187
188
189
190
191
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
192
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
193
194
195
    upcast=True,
    reorder_ops=False,
):
Tri Dao's avatar
Tri Dao committed
196
197
198
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
199
200
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
201
202
203
204
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
205
206
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
Tri Dao's avatar
Tri Dao committed
207
208
209
210
211
212
213
214
215
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
Tri Dao's avatar
Tri Dao committed
216
217
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
218
219
220
221
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
222
223
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
224
225
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
226
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
227
    else:
Tri Dao's avatar
Tri Dao committed
228
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Tri Dao's avatar
Tri Dao committed
229
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
230
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
231
232
233
234
235
236
237
238
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
239
        )
Tri Dao's avatar
Tri Dao committed
240
        scores.masked_fill_(local_mask, float("-inf"))
Tri Dao's avatar
Tri Dao committed
241
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
242
243
244
245
246
247
248
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
249
250
251
252
253
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
254
255
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
256
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
257
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
258
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
259
260
261
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
262
263
264
265
266
267
268
269
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
270
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
271
272
273
274
275
276
277
278
279
280
281
282
283
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
284
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
285
286
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
287
288


Tri Dao's avatar
Tri Dao committed
289
290
291
292
293
294
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
295
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
296
297
298
299
300
301
302
303
304
305
306
307
308
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
309
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
310
311
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
312
313
314
315
316
317
318
319
320
321
322


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
323
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
342
343
344
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
345
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
346
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
347
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
348
349
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
350
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
351
352
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
353
354
355
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
356
def convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
357
358
359
360
361
362
363
364
365
    S,
    seqlen_q,
    seqlen_k,
    query_padding_mask,
    key_padding_mask,
    head_dim,
    is_dropout,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
366
):
Tri Dao's avatar
Tri Dao committed
367
368
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
369
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
370
371
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
372
    """
Tri Dao's avatar
Tri Dao committed
373
374
    if causal:
        window_size = (window_size[0], 0)
375
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
376
    warps_n = 4
Tri Dao's avatar
Tri Dao committed
377
    blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, is_dropout, causal)
378
379
    nblocks_n = (seqlen_k_rounded + blocksize_n - 1) // blocksize_n
    nblocks_m = (seqlen_q_rounded + blocksize_m - 1) // blocksize_m
Tri Dao's avatar
Tri Dao committed
380
    mmas_n = (blocksize_n + 16 - 1) // 16
Tri Dao's avatar
Tri Dao committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    S_flat = rearrange(
        S,
        "b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
        blocksize_m=blocksize_m,
        blocksize_n=blocksize_n,
    )
    S_converted = rearrange(
        S_flat,
        "b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
        mmas_n=mmas_n,
        warps_n=warps_n,
        eight=8,
        c0=2,
        c1=2,
        c2=2,
        four=4,
    )
398

Tri Dao's avatar
Tri Dao committed
399
400
401
402
403
404
405
406
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            S.device,
Tri Dao's avatar
Tri Dao committed
407
        )
Tri Dao's avatar
Tri Dao committed
408
409
        local_mask = F.pad(
            local_mask,
410
411
412
            (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
            value=True,
        )
Tri Dao's avatar
Tri Dao committed
413
        S_converted.masked_fill_(local_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
414
415
416

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
417
418
419
    seqlen_q_og = (
        query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
    )
Tri Dao's avatar
Tri Dao committed
420
    if query_padding_mask is not None:
421
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
422
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
423
424
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
425
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
426
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
427
428
429
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
430
431


Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
438
439
440
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
    is_dropout=False,
    causal=False,
Tri Dao's avatar
Tri Dao committed
441
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
442
):
Tri Dao's avatar
Tri Dao committed
443
444
445
446
447
448
449
450
451
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
Tri Dao's avatar
Tri Dao committed
452
453
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
454
455
456
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
457
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
458
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
459
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
460
461
462
463
464
465
466
467
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
468
        )
Tri Dao's avatar
Tri Dao committed
469
        scores.masked_fill_(local_mask, float("-inf"))
Tri Dao's avatar
Tri Dao committed
470
471
    _, block_size_n = _get_block_size(scores.device, head_dim, is_dropout, causal)
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
472
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
473
    lse = torch.logsumexp(lse_block, dim=-1)
474
475
476
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
477
478
479
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
480
481
    attn_norm = torch.cat(
        [
482
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
483
484
485
486
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
487
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
488
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
489
490
491
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
492
def get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
493
494
495
496
497
    dropout_mask,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
498
):
Tri Dao's avatar
Tri Dao committed
499
500
501
502
503
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
Tri Dao's avatar
Tri Dao committed
504
505
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
506
507
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
Tri Dao's avatar
Tri Dao committed
508
    valid = torch.ones_like(dropout_mask)
Tri Dao's avatar
Tri Dao committed
509
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
510
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
511
        valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
512
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
513
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
514
515
516
517
518
519
520
521
522
        valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            dropout_mask.device,
Tri Dao's avatar
Tri Dao committed
523
        )
Tri Dao's avatar
Tri Dao committed
524
525
        dropped.masked_fill_(local_mask, False)
        valid.masked_fill_(local_mask, False)
Tri Dao's avatar
Tri Dao committed
526
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
527
    return dropped.sum() / valid.sum()
Tri Dao's avatar
Tri Dao committed
528
529


Tri Dao's avatar
Tri Dao committed
530
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
531
532
533
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
534
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
535
# @pytest.mark.parametrize("causal", [False])
Tri Dao's avatar
Tri Dao committed
536
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
537
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
538
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
539
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
540
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
Tri Dao's avatar
Tri Dao committed
541
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
542
# @pytest.mark.parametrize("seqlen", [128])
Tri Dao's avatar
Tri Dao committed
543
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
544
545
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, dtype):
Tri Dao's avatar
Tri Dao committed
546
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
547
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
548
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
549
550
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
551
    batch_size = 13
Tri Dao's avatar
Tri Dao committed
552
    nheads = 9
Tri Dao's avatar
Tri Dao committed
553
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
554
555
556
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
557
    out, lse, S_dmask = flash_attn_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
558
        qkv, dropout_p, causal=causal, window_size=window_size, return_attn_probs=True
Tri Dao's avatar
Tri Dao committed
559
    )
Tri Dao's avatar
Tri Dao committed
560
561
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
562
563
564
565
566
567
568
569
570
            S_dmask,
            seqlen,
            seqlen,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
571
        )
Tri Dao's avatar
Tri Dao committed
572
573
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
574
575
576
577
578
579
580
581
582
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
583
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
584
        )
Tri Dao's avatar
Tri Dao committed
585
586
587
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
588
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
589
590
591
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
592
593
594
    out_ref, attn_ref = attention_qkvpacked_ref(
        qkv, None, dropout_p, dropout_mask, causal=causal, window_size=window_size
    )
Tri Dao's avatar
Tri Dao committed
595
    out_pt, attn_pt = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
596
597
598
599
600
601
602
603
        qkv,
        None,
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
604
    )
Tri Dao's avatar
Tri Dao committed
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
623
624
625
626
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
627
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
628
629
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
630
631
632
633
634
635

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
636
637
638
639
640
641
642
643
644
645
646
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
647
648
649

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
650
651
652
653
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
654
        assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
655
656
657

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
658
659


Tri Dao's avatar
Tri Dao committed
660
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
661
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
662
663
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
664
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
665
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
666
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
667
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
668
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
669
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
670
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
671
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
672
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
673
def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, local, dtype):
Tri Dao's avatar
Tri Dao committed
674
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
675
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
676
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
677
678
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
679
680
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
681
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
682
683
684
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
685

Tri Dao's avatar
Tri Dao committed
686
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
687
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
Tri Dao's avatar
Tri Dao committed
688

Tri Dao's avatar
Tri Dao committed
689
690
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
691
    )
Tri Dao's avatar
Tri Dao committed
692
693

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
694
695
696
697
698
699
700
        qkv_unpad,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        causal=causal,
        window_size=window_size,
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
701
    )
Tri Dao's avatar
Tri Dao committed
702
703
704
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
705
706
707
708
709
710
711
712
            S_dmask,
            seqlen,
            seqlen,
            key_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
713
            window_size=window_size,
714
        )
Tri Dao's avatar
Tri Dao committed
715
716
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
717
718
719
720
721
722
723
724
725
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
726
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
727
728
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
729
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
730
731
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
732
733
734
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
735
    out_ref, attn_ref = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
736
        qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
737
738
739
740
741
742
743
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
        dropout_p,
        dropout_mask,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
744
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
745
746
747
748
749
750
751
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
752
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
753
754
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
755
756
757

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
758
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
759
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
760
761
762
763
764
765
766
767
768
769
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
770
771
772

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
773
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
774

Tri Dao's avatar
Tri Dao committed
775
776
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
777
        assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
778
779
780

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
781
782


Tri Dao's avatar
Tri Dao committed
783
@pytest.mark.parametrize("kvpacked", [True, False])
784
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
785
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
786
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
787
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
788
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
789
790
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
791
@pytest.mark.parametrize("causal", [False, True])
792
# @pytest.mark.parametrize("causal", [True])
Tri Dao's avatar
Tri Dao committed
793
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
794
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
795
796
797
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
798
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
814
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
815
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
816
# @pytest.mark.parametrize("dropout_p", [0.17])
Tri Dao's avatar
Tri Dao committed
817
818
819
def test_flash_attn_output(
    seqlen_q, seqlen_k, d, dropout_p, causal, local, mha_type, dtype, kvpacked
):
Tri Dao's avatar
Tri Dao committed
820
821
822
823
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
824
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
825
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
826
827
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
828
    batch_size = 13
Tri Dao's avatar
Tri Dao committed
829
830
831
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
832
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
833
834
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
835
836
837
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
838
    else:
Tri Dao's avatar
Tri Dao committed
839
840
841
842
843
844
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
845
846
847

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
848
            q, kv, dropout_p, causal=causal, window_size=window_size, return_attn_probs=True
Tri Dao's avatar
Tri Dao committed
849
850
851
        )
    else:
        out, lse, S_dmask = flash_attn_func(
Tri Dao's avatar
Tri Dao committed
852
            q, k, v, dropout_p, causal=causal, window_size=window_size, return_attn_probs=True
Tri Dao's avatar
Tri Dao committed
853
854
855
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
856
857
858
859
860
861
862
863
864
            S_dmask,
            seqlen_q,
            seqlen_k,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
865
        )
Tri Dao's avatar
Tri Dao committed
866
867
868
869
870
871
872
873
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
874
        attn = normalize_flash_attn_S(
Tri Dao's avatar
Tri Dao committed
875
876
877
878
879
880
881
882
883
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            None,
            None,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
884
        )
Tri Dao's avatar
Tri Dao committed
885
886
887
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
888
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
889
890
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
891

Tri Dao's avatar
Tri Dao committed
892
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
893
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
894
895
896
897
898
899
900
901
            q,
            kv,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
902
903
904
905
906
907
908
909
910
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
911
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
912
913
914
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
915
    else:
Tri Dao's avatar
Tri Dao committed
916
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
917
918
919
920
921
922
923
924
925
            q,
            k,
            v,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
926
927
928
929
930
931
932
933
934
935
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
936
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
937
938
939
940
941
942
943
944
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
945
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
946
947
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
948
949
950
951
952

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
953
954
955
956
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
957
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
958
959
960
961
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
962
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
963
964
965
966
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
967
968
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
996
997
998

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
999
1000
1001
1002
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1003
        assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1004

Tri Dao's avatar
Tri Dao committed
1005
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1006
1007
1008
1009
1010
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()


Tri Dao's avatar
Tri Dao committed
1011
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
1012
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
1013
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1014
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1015
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
1016
# @pytest.mark.parametrize('mha_type', ["mqa"])
Tri Dao's avatar
Tri Dao committed
1017
1018
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1019
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1020
# @pytest.mark.parametrize('causal', [True])
Tri Dao's avatar
Tri Dao committed
1021
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1022
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1023
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1024
1025
1026
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
1027
        (1, 147),
Tri Dao's avatar
Tri Dao committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
1040
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
1041
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
1042
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
1043
def test_flash_attn_varlen_output(
Tri Dao's avatar
Tri Dao committed
1044
    seqlen_q, seqlen_k, d, dropout_p, causal, local, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
1045
1046
1047
1048
1049
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
1050
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
1051
    device = "cuda"
1052
1053
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
1054
    batch_size = 13
Tri Dao's avatar
Tri Dao committed
1055
1056
1057
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1058
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1059
1060
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1061
1062
1063
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
1064
    else:
Tri Dao's avatar
Tri Dao committed
1065
1066
1067
1068
1069
1070
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
1071

Tri Dao's avatar
Tri Dao committed
1072
1073
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
1074
1075
1076
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
1090
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
1091
1092
1093
1094
1095
1096
1097
1098
1099
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            return_attn_probs=True,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1100
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1101
1102
        )
    else:
Tri Dao's avatar
Tri Dao committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
1118
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            return_attn_probs=True,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1129
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1130
        )
Tri Dao's avatar
Tri Dao committed
1131
1132
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1133
        S_dmask_converted = convert_flash_attn_S_to_softmax(
1134
1135
1136
1137
1138
1139
1140
1141
            S_dmask,
            seqlen_q,
            seqlen_k,
            query_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1142
            window_size=window_size,
1143
        )
Tri Dao's avatar
Tri Dao committed
1144
1145
1146
1147
1148
1149
1150
1151
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1152
1153
1154
1155
1156
1157
1158
1159
1160
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1161
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1162
1163
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
1164
1165
1166
1167
1168
            dropout_mask,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1169
1170
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1171
1172
1173
1174
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1175
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1176
1177
1178
1179
1180
1181
1182
1183
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1184
1185
1186
1187
1188
1189
1190
1191
1192
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1193
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1194
1195
1196
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1197
    else:
Tri Dao's avatar
Tri Dao committed
1198
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1218
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1219
1220
1221
1222
1223
1224
1225
1226
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1227
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1228
1229
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1230
1231
1232
1233

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1234
1235
1236
1237
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1238
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1239
1240
1241
1242
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1243
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1244
1245
1246
1247
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1248
1249
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1250
1251
1252
1253
1254
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1255
1256
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1267
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1280
1281
1282

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1283
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1284

Tri Dao's avatar
Tri Dao committed
1285
1286
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1287
        assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1288

Tri Dao's avatar
Tri Dao committed
1289
1290
1291
1292
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1293

1294

Tri Dao's avatar
Tri Dao committed
1295
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1296
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1297
1298
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1299
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1300
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1323
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
1335
    batch_size = 13
1336
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1337
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1338
1339
1340
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1341
1342
1343
1344
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
    out_ref, attn_ref = attention_ref(
        q, k, v, None, None, 0.0, None, causal=causal, window_size=window_size
    )
1345
1346
1347
1348
1349
1350
1351
1352
1353
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1354
        window_size=window_size,
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1407
1408
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1409
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1410
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1411
1412
1413
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
1414
# @pytest.mark.parametrize("d", [64])
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1433
def test_flash_attn_varlen_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
1445
    batch_size = 13
1446
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1447
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1478
        window_size=window_size,
1479
1480
1481
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1482
1483
1484
1485
1486
1487
1488
1489
1490
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1501
        window_size=window_size,
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


Tri Dao's avatar
Tri Dao committed
1555
1556
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1557
1558
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1559
1560
1561
1562
1563
1564
1565
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1566
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
1567
1568
1569
1570
1571
1572
1573
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (3, 1024),
        (1, 339),
1574
        (64, 800),
Tri Dao's avatar
Tri Dao committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
        (3, 799),
        (64, 2048),
        (16, 20000),
        (16, 100000),
        (128, 128),
        (256, 256),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1584
def test_flash_attn_splitkv(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
Tri Dao's avatar
Tri Dao committed
1585
1586
1587
1588
1589
1590
1591
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 1
    nheads = 12
Tri Dao's avatar
Tri Dao committed
1592
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1593
1594
1595
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1596
1597
1598
1599
1600
1601
    out, lse, _ = flash_attn_func(
        q, k, v, 0.0, causal=causal, window_size=window_size, return_attn_probs=True
    )
    out_ref, attn_ref = attention_ref(
        q, k, v, None, None, 0.0, None, causal=causal, window_size=window_size
    )
Tri Dao's avatar
Tri Dao committed
1602
1603
1604
1605
1606
1607
1608
1609
1610
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1611
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 2e-4
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 2e-4
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 2e-4

1661

Tri Dao's avatar
Tri Dao committed
1662
1663
1664
1665
1666
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("num_splits", [1, 0])
# @pytest.mark.parametrize("num_splits", [0])
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
1667
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
1668
@pytest.mark.parametrize("new_kv", [False, True])
1669
# @pytest.mark.parametrize("new_kv", [True])
Tri Dao's avatar
Tri Dao committed
1670
@pytest.mark.parametrize("local", [False, True])
1671
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1672
@pytest.mark.parametrize("causal", [False, True])
1673
# @pytest.mark.parametrize("causal", [True])
1674
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
1675
1676
1677
1678
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
1679
# @pytest.mark.parametrize("rotary_fraction", [0.0])
1680
1681
@pytest.mark.parametrize("has_batch_idx", [False, True])
# @pytest.mark.parametrize("has_batch_idx", [True])
Tri Dao's avatar
Tri Dao committed
1682
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1683
1684
1685
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1686
# @pytest.mark.parametrize("d", [128])
Tri Dao's avatar
Tri Dao committed
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        (1, 128 * 1024),
        (16, 128 * 1024),
        (128, 128),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1704
def test_flash_attn_kvcache(
1705
1706
1707
    seqlen_q,
    seqlen_k,
    d,
1708
    has_batch_idx,
1709
1710
1711
1712
    rotary_fraction,
    rotary_interleaved,
    seqlen_new_eq_seqlen_q,
    causal,
Tri Dao's avatar
Tri Dao committed
1713
    local,
1714
1715
1716
1717
    new_kv,
    mha_type,
    num_splits,
    dtype,
1718
):
Tri Dao's avatar
Tri Dao committed
1719
1720
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
1721
1722
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1723
1724
1725
1726
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
1727
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
Tri Dao's avatar
Tri Dao committed
1728
    nheads = 6
1729
1730
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
Tri Dao's avatar
Tri Dao committed
1731
1732
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1733
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1734
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
1735
    seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
Tri Dao's avatar
Tri Dao committed
1736
    if new_kv:
1737
1738
        k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
        v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1739
1740
    else:
        k, v = None, None
1741
1742
    k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
    v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
1743
1744
    cache_seqlens = torch.randint(
        0,
1745
        # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
Tri Dao's avatar
Tri Dao committed
1746
        (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
1747
1748
        if new_kv
        else (seqlen_k + 1),
1749
1750
1751
1752
        (batch_size,),
        dtype=torch.int32,
        device=device,
    )
1753
1754
1755
1756
    if has_batch_idx:
        cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[:batch_size]
    else:
        cache_batch_idx = None
Tri Dao's avatar
Tri Dao committed
1757
    # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
1758
1759
1760
1761
    if rotary_dim > 0:
        angle = torch.rand(seqlen_k, rotary_dim // 2, device=device) * 2 * math.pi
        cos = torch.cos(angle).to(dtype=dtype)
        sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1762
        if causal or local:
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
            q_ro = apply_rotary_emb(
                q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
            )
        else:
            q_ro = rearrange(
                apply_rotary_emb(
                    rearrange(q, "b s h d -> b 1 (s h) d"),
                    cos,
                    sin,
                    seqlen_offsets=cache_seqlens,
                    interleaved=rotary_interleaved,
                ),
                "b 1 (s h) d -> b s h d",
                s=seqlen_q,
            )
        # q_ro = q
        k_ro = apply_rotary_emb(
            k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
        )
    else:
        cos, sin = None, None
        q_ro, k_ro = q, k
Tri Dao's avatar
Tri Dao committed
1785
    # k_cache[:, 64:] = -1
1786
1787
    k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
    v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
Tri Dao's avatar
Tri Dao committed
1788
1789
1790
    arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
    cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
    if new_kv:
1791
1792
1793
        update_mask = torch.logical_and(
            cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
        )
1794
        k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
Tri Dao's avatar
Tri Dao committed
1795
1796
1797
        v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
    k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
    v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
1798
    out = flash_attn_with_kvcache(
1799
1800
1801
1802
1803
1804
1805
1806
        q,
        k_cache,
        v_cache,
        k,
        v,
        cos,
        sin,
        cache_seqlens,
1807
        cache_batch_idx,
1808
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1809
        window_size=window_size,
1810
1811
        rotary_interleaved=rotary_interleaved,
        num_splits=num_splits,
1812
    )
Tri Dao's avatar
Tri Dao committed
1813
1814
1815
1816
    # out = flash_attn_with_kvcache(
    #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
    # )
    # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
Tri Dao's avatar
Tri Dao committed
1817
1818
1819
1820
1821
1822
    # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # probs = torch.softmax(qk, dim=-1)
1823
1824
    key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
    out_ref, _ = attention_ref(
Tri Dao's avatar
Tri Dao committed
1825
1826
1827
1828
1829
1830
1831
1832
1833
        q_ro,
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1834
1835
    )
    out_pt, _ = attention_ref(
1836
        q_ro,
1837
1838
1839
1840
1841
1842
1843
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1844
        window_size=window_size,
1845
1846
1847
        upcast=False,
        reorder_ops=True,
    )
Tri Dao's avatar
Tri Dao committed
1848
1849
1850
1851
1852
1853
1854
1855
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    if new_kv:
1856
1857
1858
1859
        k_cache_select = k_cache if not has_batch_idx else k_cache[cache_batch_idx]
        v_cache_select = v_cache if not has_batch_idx else v_cache[cache_batch_idx]
        assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
        assert torch.equal(v_cache_select, v_cache_ref)
1860
    assert (out - out_ref).abs().max().item() <= 3 * (out_pt - out_ref).abs().max().item() + 1e-5
Tri Dao's avatar
Tri Dao committed
1861

Tri Dao's avatar
Tri Dao committed
1862

1863
1864
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1865
@pytest.mark.parametrize("causal", [False, True])
1866
1867
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1868
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
1869
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
1870
# @pytest.mark.parametrize('d', [128])
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
1890
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
1891
1892
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1893
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
1894
1895
    # set seed
    torch.random.manual_seed(0)
1896
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
1897
    nheads = 4
1898
1899
1900
1901
1902
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
1903
    g = torch.randn_like(out0)
1904
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1905
1906
1907
1908
1909
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
1910
        # Numerical error if we just do any arithmetic on dq
1911
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1912

1913
1914
1915
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
1916
1917
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
1918

1919
        if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1920
1921
1922
1923
1924
1925
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
1926
            if not dq_equal:
1927
1928
1929
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
1930
            assert dq_equal
1931
1932


Tri Dao's avatar
Tri Dao committed
1933
1934
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
1935
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1936
@pytest.mark.parametrize("d", [16, 32, 64])
1937
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
1938
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
1939
1940
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1941
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
1942
1943
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
1944
    device = "cuda"
1945
1946
1947
1948
1949
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
1950
1951
1952
1953
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
1970
1971
1972
1973
1974
1975
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
1976
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1989
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1990
@pytest.mark.parametrize("causal", [False, True])
1991
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
1992
@pytest.mark.parametrize("d", [64, 128])
1993
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1994
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
1995
1996
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
1997
    """We previously had a bug where we were using the wrong strides of dout, which shows up
1998
1999
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
2000
    device = "cuda"
2001
2002
2003
2004
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
2005
2006
2007
2008
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2025
2026
2027
2028
2029
2030
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2031
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2045
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2046
@pytest.mark.parametrize("d", [16, 32, 64])
2047
2048
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2049
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2050
2051
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
2052
    device = "cuda"
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()