run_squad.py 33.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
20
from transformers.data.metrics.squad_metrics import compute_predictions_logits, compute_predictions_log_probs, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
import numpy as np
import torch
30
31
from torch.utils.data import (
    DataLoader, RandomSampler, SequentialSampler, TensorDataset)
32
33
from torch.utils.data.distributed import DistributedSampler

34
35
36
37
38
39
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
40

41
from transformers import (WEIGHTS_NAME, BertConfig,
42
43
44
45
46
47
48
49
50
                          BertForQuestionAnswering, BertTokenizer,
                          XLMConfig, XLMForQuestionAnswering,
                          XLMTokenizer, XLNetConfig,
                          XLNetForQuestionAnswering,
                          XLNetTokenizer,
                          DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
                          AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer,
                          XLMConfig, XLMForQuestionAnswering, XLMTokenizer,
                          )
thomwolf's avatar
thomwolf committed
51

Lysandre's avatar
Lysandre committed
52
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
53
54
55

logger = logging.getLogger(__name__)

56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys())
thomwolf's avatar
thomwolf committed
57
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
58
59

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
60
61
62
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
Lysandre's avatar
Lysandre committed
63
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
64
65
    'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer)
thomwolf's avatar
thomwolf committed
66
67
}

68

thomwolf's avatar
thomwolf committed
69
70
71
72
73
74
75
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

76

77
78
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
79

80

81
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
82
83
84
85
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

86
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
87
88
89
90
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(
        train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
91
92

    if args.max_steps > 0:
93
        t_total = args.max_steps
94
95
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
thomwolf's avatar
thomwolf committed
96
    else:
97
98
        t_total = len(
            train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
99

100
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
101
102
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
103
104
105
106
        {'params': [p for n, p in model.named_parameters() if not any(
            nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(
            nd in n for nd in no_decay)], 'weight_decay': 0.0}
LysandreJik's avatar
Cleanup  
LysandreJik committed
107
    ]
108
109
110
111
112
113
114
115
116
117
118
119
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)

    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(args.model_name_or_path, 'optimizer.pt')) and os.path.isfile(os.path.join(args.model_name_or_path, 'scheduler.pt')):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(torch.load(
            os.path.join(args.model_name_or_path, 'optimizer.pt')))
        scheduler.load_state_dict(torch.load(
            os.path.join(args.model_name_or_path, 'scheduler.pt')))
LysandreJik's avatar
Cleanup  
LysandreJik committed
120

thomwolf's avatar
thomwolf committed
121
122
123
124
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
125
126
127
128
129
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

        model, optimizer = amp.initialize(
            model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
130

131
132
133
134
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
135
136
137
138
139
140
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
141
142
143
144
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
145
146
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
147
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
148
149
150
                args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
151
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
152

Lysandre's avatar
Lysandre committed
153
    global_step = 1
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    epochs_trained = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path):
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split('-')[-1].split('/')[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)

        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step")
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

thomwolf's avatar
thomwolf committed
172
    tr_loss, logging_loss = 0.0, 0.0
173
    model.zero_grad()
174
175
176
177
178
    train_iterator = trange(epochs_trained, int(
        args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    # Added here for reproductibility (even between python 2 and 3)
    set_seed(args)

179
    for _ in train_iterator:
180
181
        epoch_iterator = tqdm(train_dataloader, desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
182
        for step, batch in enumerate(epoch_iterator):
183
184
185
186
187
188

            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

189
            model.train()
thomwolf's avatar
thomwolf committed
190
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
191
192
193
194
195
196
197
198

            inputs = {
                'input_ids':       batch[0],
                'attention_mask':  batch[1],
                'start_positions': batch[3],
                'end_positions':   batch[4]
            }

199
200
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
201

202
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
203
204
                inputs.update({'cls_index': batch[5], 'p_mask': batch[6]})

Peiqin Lin's avatar
typos  
Peiqin Lin committed
205
            outputs = model(**inputs)
206
207
            # model outputs are always tuple in transformers (see doc)
            loss = outputs[0]
thomwolf's avatar
thomwolf committed
208

209
            if args.n_gpu > 1:
210
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
211
212
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
213

214
215
216
217
218
219
220
221
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
222
                if args.fp16:
223
224
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
225
                else:
226
227
                    torch.nn.utils.clip_grad_norm_(
                        model.parameters(), args.max_grad_norm)
228

229
                optimizer.step()
230
                scheduler.step()  # Update learning rate schedule
231
232
233
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
234
                # Log metrics
235
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
236
237
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
238
239
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
240
241
242
243
244
245
                            tb_writer.add_scalar(
                                'eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar(
                        'lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar(
                        'loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
246
247
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
248
                # Save model checkpoint
249
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
250
251
                    output_dir = os.path.join(
                        args.output_dir, 'checkpoint-{}'.format(global_step))
252
253
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
254
255
256
                    # Take care of distributed/parallel training
                    model_to_save = model.module if hasattr(
                        model, 'module') else model
257
                    model_to_save.save_pretrained(output_dir)
258
259
260
261
                    tokenizer.save_pretrained(output_dir)

                    torch.save(args, os.path.join(
                        output_dir, 'training_args.bin'))
262
263
                    logger.info("Saving model checkpoint to %s", output_dir)

264
265
266
267
268
269
270
                    torch.save(optimizer.state_dict(), os.path.join(
                        output_dir, 'optimizer.pt'))
                    torch.save(scheduler.state_dict(), os.path.join(
                        output_dir, 'scheduler.pt'))
                    logger.info(
                        "Saving optimizer and scheduler states to %s", output_dir)

271
272
273
274
275
276
277
            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
278
279
280
    if args.local_rank in [-1, 0]:
        tb_writer.close()

281
282
283
284
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
285
286
    dataset, examples, features = load_and_cache_examples(
        args, tokenizer, evaluate=True, output_examples=True)
287
288
289
290
291

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
292

293
    # Note that DistributedSampler samples randomly
294
    eval_sampler = SequentialSampler(dataset)
295
296
    eval_dataloader = DataLoader(
        dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
297

ronakice's avatar
ronakice committed
298
299
300
301
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

302
303
304
305
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
306

307
    all_results = []
308
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
309

310
311
312
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
313

314
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
315
316
317
318
            inputs = {
                'input_ids':      batch[0],
                'attention_mask': batch[1]
            }
319

320
            if args.model_type != 'distilbert':
321
322
                # XLM don't use segment_ids
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
323

324
            example_indices = batch[3]
325

LysandreJik's avatar
Cleanup  
LysandreJik committed
326
            # XLNet and XLM use more arguments for their predictions
327
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
328
329
                inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})

330
331
332
333
334
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
335

LysandreJik's avatar
LysandreJik committed
336
337
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
338
339
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
340
341
342
343
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
344
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
345
346
347
                cls_logits = output[4]

                result = SquadResult(
348
349
350
                    unique_id, start_logits, end_logits,
                    start_top_index=start_top_index,
                    end_top_index=end_top_index,
LysandreJik's avatar
LysandreJik committed
351
352
353
354
355
356
357
358
359
                    cls_logits=cls_logits
                )

            else:
                start_logits, end_logits = output
                result = SquadResult(
                    unique_id, start_logits, end_logits
                )

360
            all_results.append(result)
361

362
    evalTime = timeit.default_timer() - start_time
363
364
    logger.info("  Evaluation done in total %f secs (%f sec per example)",
                evalTime, evalTime / len(dataset))
365

thomwolf's avatar
thomwolf committed
366
    # Compute predictions
367
368
369
370
    output_prediction_file = os.path.join(
        args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(
        args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
371

372
    if args.version_2_with_negative:
373
374
        output_null_log_odds_file = os.path.join(
            args.output_dir, "null_odds_{}.json".format(prefix))
375
376
    else:
        output_null_log_odds_file = None
377

LysandreJik's avatar
Cleanup  
LysandreJik committed
378
    # XLNet and XLM use a more complex post-processing procedure
379
    if args.model_type in ['xlnet', 'xlm']:
380
381
382
383
        start_n_top = model.config.start_n_top if hasattr(
            model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(
            model, "config") else model.module.config.end_n_top
Lysandre's avatar
Lysandre committed
384

385
        predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
386
387
388
389
                                                    args.max_answer_length, output_prediction_file,
                                                    output_nbest_file, output_null_log_odds_file,
                                                    start_n_top, end_n_top,
                                                    args.version_2_with_negative, tokenizer, args.verbose_logging)
390
    else:
391
        predictions = compute_predictions_logits(examples, features, all_results, args.n_best_size,
392
393
394
                                                 args.max_answer_length, args.do_lower_case, output_prediction_file,
                                                 output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                                                 args.version_2_with_negative, args.null_score_diff_threshold)
395

LysandreJik's avatar
Cleanup  
LysandreJik committed
396
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
397
    results = squad_evaluate(examples, predictions)
398
399
    return results

400

401
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
402
    if args.local_rank not in [-1, 0] and not evaluate:
403
404
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
405

406
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
407
408
    input_dir = args.data_dir if args.data_dir else "."
    cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
409
        'dev' if evaluate else 'train',
410
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
LysandreJik's avatar
Cleanup  
LysandreJik committed
411
412
413
414
        str(args.max_seq_length))
    )

    # Init features and dataset from cache if it exists
415
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
416
417
        logger.info("Loading features from cached file %s",
                    cached_features_file)
418
419
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
420
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
421
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
422

LysandreJik's avatar
Cleanup  
LysandreJik committed
423
424
425
426
        if not args.data_dir:
            try:
                import tensorflow_datasets as tfds
            except ImportError:
427
428
                raise ImportError(
                    "If not data_dir is specified, tensorflow_datasets needs to be installed.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
429
430

            if args.version_2_with_negative:
431
432
                logger.warn(
                    "tensorflow_datasets does not handle version 2 of SQuAD.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
433
434

            tfds_examples = tfds.load("squad")
435
436
            examples = SquadV1Processor().get_examples_from_dataset(
                tfds_examples, evaluate=evaluate)
LysandreJik's avatar
Cleanup  
LysandreJik committed
437
438
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
439
440
            examples = processor.get_dev_examples(
                args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
LysandreJik's avatar
LysandreJik committed
441

442
        features, dataset = squad_convert_examples_to_features(
Lysandre's avatar
Lysandre committed
443
444
445
446
447
448
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
449
            return_dataset='pt'
Lysandre's avatar
Lysandre committed
450
451
        )

thomwolf's avatar
thomwolf committed
452
        if args.local_rank in [-1, 0]:
453
454
455
456
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save({"features": features, "dataset": dataset},
                       cached_features_file)
thomwolf's avatar
thomwolf committed
457

VictorSanh's avatar
VictorSanh committed
458
    if args.local_rank == 0 and not evaluate:
459
460
        # Make sure only the first process in distributed training process the dataset, and the others will use the cache
        torch.distributed.barrier()
thomwolf's avatar
thomwolf committed
461

462
463
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
464
465
    return dataset

466
467
468
469

def main():
    parser = argparse.ArgumentParser()

470
    # Required parameters
471
472
473
474
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
475
476
477
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

478
    # Other parameters
LysandreJik's avatar
Cleanup  
LysandreJik committed
479
480
    parser.add_argument("--data_dir", default=None, type=str,
                        help="The input data dir. Should contain the .json files for the task. If not specified, will run with tensorflow_datasets.")
481
482
483
484
485
486
487
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
488
489
490
491
492
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

493
494
495
496
497
498
499
500
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
501
502
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
503
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
504
                        help="Whether to run eval on the dev set.")
505
506
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
507
    parser.add_argument("--do_lower_case", action='store_true',
508
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
509

510
511
512
513
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
514
515
516
517
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
518
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
519
                        help="Weight decay if we apply some.")
520
521
522
523
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
524
525
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
526
527
528
529
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
530
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
531
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
532
533
534
535
536
537
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
538

539
540
541
542
543
544
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
545
    parser.add_argument("--no_cuda", action='store_true',
546
                        help="Whether not to use CUDA when available")
547
548
549
550
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
551
    parser.add_argument('--seed', type=int, default=42,
552
                        help="random seed for initialization")
553

thomwolf's avatar
thomwolf committed
554
    parser.add_argument("--local_rank", type=int, default=-1,
555
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
556
557
558
559
560
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
561
562
563
564
    parser.add_argument('--server_ip', type=str, default='',
                        help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='',
                        help="Can be used for distant debugging.")
565
566
    args = parser.parse_args()

LysandreJik's avatar
Cleanup  
LysandreJik committed
567
568
569
570
571
    args.predict_file = os.path.join(args.output_dir, 'predictions_{}_{}.txt'.format(
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
        str(args.max_seq_length))
    )

thomwolf's avatar
thomwolf committed
572
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
573
574
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))
thomwolf's avatar
thomwolf committed
575

576
    # Setup distant debugging if needed
577
578
579
580
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
581
582
        ptvsd.enable_attach(
            address=(args.server_ip, args.server_port), redirect_output=True)
583
584
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
585
    # Setup CUDA, GPU & distributed training
586
    if args.local_rank == -1 or args.no_cuda:
587
588
        device = torch.device(
            "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
589
590
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
591
592
593
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
594
595
        args.n_gpu = 1
    args.device = device
596

thomwolf's avatar
thomwolf committed
597
    # Setup logging
598
599
600
    logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt='%m/%d/%Y %H:%M:%S',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
601
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
602
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
603

604
605
    # Set seed
    set_seed(args)
606

thomwolf's avatar
thomwolf committed
607
    # Load pretrained model and tokenizer
608
    if args.local_rank not in [-1, 0]:
609
610
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
611

612
    args.model_type = args.model_type.lower()
613
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
614
615
616
617
618
619
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
620
621
                                        from_tf=bool(
                                            '.ckpt' in args.model_name_or_path),
thomwolf's avatar
thomwolf committed
622
623
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
624
625

    if args.local_rank == 0:
626
627
        # Make sure only the first process in distributed training will download model & vocab
        torch.distributed.barrier()
628

thomwolf's avatar
thomwolf committed
629
    model.to(args.device)
630

631
632
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
633
634
635
636
637
638
639
640
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
641
642
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
Simon Layton's avatar
Simon Layton committed
643

thomwolf's avatar
thomwolf committed
644
    # Training
645
    if args.do_train:
646
647
        train_dataset = load_and_cache_examples(
            args, tokenizer, evaluate=False, output_examples=False)
648
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
649
650
        logger.info(" global_step = %s, average loss = %s",
                    global_step, tr_loss)
651

thomwolf's avatar
thomwolf committed
652
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
653
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
654
655
656
657
658
659
660
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
661
662
        # Take care of distributed/parallel training
        model_to_save = model.module if hasattr(model, 'module') else model
663
664
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
665
666

        # Good practice: save your training arguments together with the trained model
667
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
668

669
        # Load a trained model and vocabulary that you have fine-tuned
670
671
672
673
        model = model_class.from_pretrained(
            args.output_dir, force_download=True)
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
674
675
        model.to(args.device)

thomwolf's avatar
thomwolf committed
676
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
677
678
679
680
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
681
682
683
684
            checkpoints = list(os.path.dirname(c) for c in sorted(
                glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
685

686
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
687

688
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
689
            # Reload the model
690
691
692
693
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(
                checkpoint, force_download=True)
694
            model.to(args.device)
thomwolf's avatar
thomwolf committed
695
696

            # Evaluate
697
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
698

699
700
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v)
                          for k, v in result.items())
701
            results.update(result)
thomwolf's avatar
thomwolf committed
702

703
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
704

705
    return results
706
707
708
709


if __name__ == "__main__":
    main()