"vscode:/vscode.git/clone" did not exist on "ee6e1df11839c4699e0a17b61e0bffdae85751f6"
run_squad.py 31.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet) with an optional step of distillation."""
17
18
19
20
21
22
23

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
24
import glob
25
26
27
28
29
30

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
31
32
import torch.nn.functional as F
import torch.nn as nn
33
34
35
36
from tqdm import tqdm, trange

from tensorboardX import SummaryWriter

37
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
38
39
40
41
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
42
43
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
44

45
from transformers import AdamW, WarmupLinearSchedule
46

47
48
49
from utils_squad import (read_squad_examples, convert_examples_to_features,
                         RawResult, write_predictions,
                         RawResultExtended, write_predictions_extended)
50

thomwolf's avatar
thomwolf committed
51
52
53
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
54
55
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

56
57
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
58
59
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
60
61

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
62
63
64
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
65
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
66
67
}

thomwolf's avatar
thomwolf committed
68
69
70
71
72
73
74
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

75
76
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
77

78
def train(args, train_dataset, model, tokenizer, teacher=None):
thomwolf's avatar
thomwolf committed
79
80
81
82
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

83
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
84
85
86
87
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
88
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
89
90
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
91
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
92

93
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
94
95
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
96
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
97
98
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
99
100
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
101
102
103
104
105
106
107
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

108
109
110
111
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
112
113
114
115
116
117
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
118
119
120
121
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
122
123
124
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
125
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
126
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
127
128
129

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
130
131
132
133
134
135
136
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
137
138
            if teacher is not None:
                teacher.eval()
thomwolf's avatar
thomwolf committed
139
            batch = tuple(t.to(args.device) for t in batch)
140
            inputs = {'input_ids':       batch[0],
thomwolf's avatar
thomwolf committed
141
142
                      'attention_mask':  batch[1], 
                      'start_positions': batch[3], 
143
                      'end_positions':   batch[4]}
144
145
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
146
147
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
148
                               'p_mask':       batch[6]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
149
            outputs = model(**inputs)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            loss, start_logits_stu, end_logits_stu = outputs

            # Distillation loss
            if teacher is not None:
                if 'token_type_ids' not in inputs:
                    inputs['token_type_ids'] = None if args.teacher_type == 'xlm' else batch[2]
                with torch.no_grad():
                    start_logits_tea, end_logits_tea = teacher(input_ids=inputs['input_ids'],
                                                               token_type_ids=inputs['token_type_ids'],
                                                               attention_mask=inputs['attention_mask'])
                assert start_logits_tea.size() == start_logits_stu.size()
                assert end_logits_tea.size() == end_logits_stu.size()
                
                loss_fct = nn.KLDivLoss(reduction='batchmean')
                loss_start = loss_fct(F.log_softmax(start_logits_stu/args.temperature, dim=-1),
                                      F.softmax(start_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
                loss_end = loss_fct(F.log_softmax(end_logits_stu/args.temperature, dim=-1),
                                    F.softmax(end_logits_tea/args.temperature, dim=-1)) * (args.temperature**2)
                loss_ce = (loss_start + loss_end)/2.

                loss = args.alpha_ce*loss_ce + args.alpha_squad*loss
thomwolf's avatar
thomwolf committed
171

172
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
173
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
174
175
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
176

177
178
179
180
181
182
183
184
185
186
187
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
188
                scheduler.step()  # Update learning rate schedule
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
219
220
221
    if args.local_rank in [-1, 0]:
        tb_writer.close()

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
246
                      'attention_mask': batch[1]
thomwolf's avatar
thomwolf committed
247
                      }
248
249
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
250
251
252
253
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
254
255
256
257
258
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
259
260
261
262
263
264
265
266
267
268
269
270
271
            if args.model_type in ['xlnet', 'xlm']:
                # XLNet uses a more complex post-processing procedure
                result = RawResultExtended(unique_id            = unique_id,
                                           start_top_log_probs  = to_list(outputs[0][i]),
                                           start_top_index      = to_list(outputs[1][i]),
                                           end_top_log_probs    = to_list(outputs[2][i]),
                                           end_top_index        = to_list(outputs[3][i]),
                                           cls_logits           = to_list(outputs[4][i]))
            else:
                result = RawResult(unique_id    = unique_id,
                                   start_logits = to_list(outputs[0][i]),
                                   end_logits   = to_list(outputs[1][i]))
            all_results.append(result)
272

thomwolf's avatar
thomwolf committed
273
    # Compute predictions
274
275
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
276
277
278
279
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
280
281
282
283
284
285

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
        write_predictions_extended(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
286
287
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
288
289
290
291
292
    else:
        write_predictions(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
293

thomwolf's avatar
thomwolf committed
294
    # Evaluate with the official SQuAD script
295
296
297
298
299
300
301
302
    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
303
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
304
305
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

306
307
308
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
309
        'dev' if evaluate else 'train',
310
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
311
312
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
313
314
315
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
316
317
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_squad_examples(input_file=input_file,
318
319
                                                is_training=not evaluate,
                                                version_2_with_negative=args.version_2_with_negative)
320
321
322
323
324
325
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
                                                is_training=not evaluate)
thomwolf's avatar
thomwolf committed
326
327
328
329
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
330
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
331
332
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
333
    # Convert to Tensors and build dataset
334
335
336
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
337
338
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
339
    if evaluate:
thomwolf's avatar
thomwolf committed
340
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
341
342
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
343
344
345
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
346
347
348
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
349

350
351
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
352
353
    return dataset

354
355
356
357
358

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
359
360
361
362
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
363
364
365
366
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
367
368
369
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

370
371
372
373
374
375
376
377
378
379
380
381
    # Distillation parameters (optional)
    parser.add_argument('--teacher_type', default=None, type=str,
                        help="Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for distillation.")
    parser.add_argument('--teacher_name_or_path', default=None, type=str,
                        help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.")
    parser.add_argument('--alpha_ce', default=0.5, type=float,
                        help="Distillation loss linear weight. Only for distillation.")
    parser.add_argument('--alpha_squad', default=0.5, type=float,
                        help="True SQuAD loss linear weight. Only for distillation.")
    parser.add_argument('--temperature', default=2.0, type=float,
                        help="Distillation temperature. Only for distillation.")

382
    ## Other parameters
383
384
385
386
387
388
389
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
390
391
392
393
394
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

395
396
397
398
399
400
401
402
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
403
404
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
405
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
406
                        help="Whether to run eval on the dev set.")
407
408
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
409
    parser.add_argument("--do_lower_case", action='store_true',
410
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
411

412
413
414
415
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
416
417
418
419
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
420
421
422
423
424
425
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
426
427
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
428
429
430
431
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
432
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
433
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
434
435
436
437
438
439
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
440

441
442
443
444
445
446
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
447
    parser.add_argument("--no_cuda", action='store_true',
448
                        help="Whether not to use CUDA when available")
449
450
451
452
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
453
    parser.add_argument('--seed', type=int, default=42,
454
                        help="random seed for initialization")
455

thomwolf's avatar
thomwolf committed
456
    parser.add_argument("--local_rank", type=int, default=-1,
457
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
458
459
460
461
462
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
463
464
465
466
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
467
468
469
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

470
    # Setup distant debugging if needed
471
472
473
474
475
476
477
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
478
    # Setup CUDA, GPU & distributed training
479
480
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
481
482
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
483
484
485
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
486
487
        args.n_gpu = 1
    args.device = device
488

thomwolf's avatar
thomwolf committed
489
    # Setup logging
490
491
492
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
493
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
494
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
495

496
497
    # Set seed
    set_seed(args)
498

thomwolf's avatar
thomwolf committed
499
    # Load pretrained model and tokenizer
500
    if args.local_rank not in [-1, 0]:
501
502
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

503
    args.model_type = args.model_type.lower()
504
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
505
506
507
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
508

509
510
511
512
513
514
515
516
517
518
519
520
    if args.teacher_type is not None:
        assert args.teacher_name_or_path is not None
        assert args.alpha_ce > 0.
        assert args.alpha_ce + args.alpha_squad > 0.
        assert args.teacher_type != 'distilbert', "We constraint teachers not to be of type DistilBERT."
        teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type]
        teacher_config = teacher_config_class.from_pretrained(args.teacher_name_or_path)
        teacher = teacher_model_class.from_pretrained(args.teacher_name_or_path, config=teacher_config)
        teacher.to(args.device)
    else:
        teacher = None

521
    if args.local_rank == 0:
522
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
523

thomwolf's avatar
thomwolf committed
524
    model.to(args.device)
525

526
527
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
528
    # Training
529
    if args.do_train:
530
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
531
        global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher)
532
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
533

534

thomwolf's avatar
thomwolf committed
535
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
536
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
537
538
539
540
541
542
543
544
545
546
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
547
548

        # Good practice: save your training arguments together with the trained model
549
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
550

551
552
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
553
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
554
555
556
        model.to(args.device)


thomwolf's avatar
thomwolf committed
557
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
558
559
560
561
562
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
563
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
564

565
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
566

567
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
568
            # Reload the model
569
570
571
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
572
573

            # Evaluate
574
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
575

576
577
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
578

579
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
580

581
    return results
582
583
584
585


if __name__ == "__main__":
    main()