run_squad.py 29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18
19
20
21
22
23

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
24
import glob
25
26
27
28
29
30
31
32
33
34

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange

from tensorboardX import SummaryWriter

35
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
36
37
38
39
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
40
41
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
42

43
from transformers import AdamW, WarmupLinearSchedule
44

45
46
47
from utils_squad import (read_squad_examples, convert_examples_to_features,
                         RawResult, write_predictions,
                         RawResultExtended, write_predictions_extended)
48

thomwolf's avatar
thomwolf committed
49
50
51
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
52
53
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

54
55
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
56
57
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
58
59

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
60
61
62
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
63
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
64
65
}

thomwolf's avatar
thomwolf committed
66
67
68
69
70
71
72
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

73
74
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
75

76
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
77
78
79
80
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

81
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
82
83
84
85
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
86
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
87
88
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
89
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
90

91
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
92
93
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
94
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
95
96
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
97
98
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
99
100
101
102
103
104
105
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

106
107
108
109
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
110
111
112
113
114
115
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
116
117
118
119
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
120
121
122
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
123
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
124
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
125
126
127

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
128
129
130
131
132
133
134
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
135
            batch = tuple(t.to(args.device) for t in batch)
136
            inputs = {'input_ids':       batch[0],
thomwolf's avatar
thomwolf committed
137
138
                      'attention_mask':  batch[1], 
                      'start_positions': batch[3], 
139
                      'end_positions':   batch[4]}
140
141
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
142
143
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
144
                               'p_mask':       batch[6]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
145
            outputs = model(**inputs)
146
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
147

148
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
149
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
150
151
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
152

153
154
155
156
157
158
159
160
161
162
163
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
164
                scheduler.step()  # Update learning rate schedule
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
195
196
197
    if args.local_rank in [-1, 0]:
        tb_writer.close()

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
222
                      'attention_mask': batch[1]
thomwolf's avatar
thomwolf committed
223
                      }
224
225
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
226
227
228
229
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
230
231
232
233
234
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
235
236
237
238
239
240
241
242
243
244
245
246
247
            if args.model_type in ['xlnet', 'xlm']:
                # XLNet uses a more complex post-processing procedure
                result = RawResultExtended(unique_id            = unique_id,
                                           start_top_log_probs  = to_list(outputs[0][i]),
                                           start_top_index      = to_list(outputs[1][i]),
                                           end_top_log_probs    = to_list(outputs[2][i]),
                                           end_top_index        = to_list(outputs[3][i]),
                                           cls_logits           = to_list(outputs[4][i]))
            else:
                result = RawResult(unique_id    = unique_id,
                                   start_logits = to_list(outputs[0][i]),
                                   end_logits   = to_list(outputs[1][i]))
            all_results.append(result)
248

thomwolf's avatar
thomwolf committed
249
    # Compute predictions
250
251
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
252
253
254
255
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
256
257
258
259
260
261

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
        write_predictions_extended(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
262
263
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
264
265
266
267
268
    else:
        write_predictions(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
269

thomwolf's avatar
thomwolf committed
270
    # Evaluate with the official SQuAD script
271
272
273
274
275
276
277
278
    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results


def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
279
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
280
281
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

282
283
284
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
285
        'dev' if evaluate else 'train',
286
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
287
288
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
289
290
291
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
292
293
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_squad_examples(input_file=input_file,
294
295
                                                is_training=not evaluate,
                                                version_2_with_negative=args.version_2_with_negative)
296
297
298
299
300
301
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
                                                is_training=not evaluate)
thomwolf's avatar
thomwolf committed
302
303
304
305
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
306
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
307
308
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
309
    # Convert to Tensors and build dataset
310
311
312
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
313
314
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
315
    if evaluate:
thomwolf's avatar
thomwolf committed
316
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
317
318
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
319
320
321
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
322
323
324
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
325

326
327
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
328
329
    return dataset

330
331
332
333
334

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
335
336
337
338
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
339
340
341
342
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
343
344
345
346
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
347
348
349
350
351
352
353
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
354
355
356
357
358
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

359
360
361
362
363
364
365
366
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
367
368
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
369
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
370
                        help="Whether to run eval on the dev set.")
371
372
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
373
    parser.add_argument("--do_lower_case", action='store_true',
374
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
375

376
377
378
379
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
380
381
382
383
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
384
385
386
387
388
389
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
390
391
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
392
393
394
395
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
396
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
397
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
398
399
400
401
402
403
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
404

405
406
407
408
409
410
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
411
    parser.add_argument("--no_cuda", action='store_true',
412
                        help="Whether not to use CUDA when available")
413
414
415
416
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
417
    parser.add_argument('--seed', type=int, default=42,
418
                        help="random seed for initialization")
419

thomwolf's avatar
thomwolf committed
420
    parser.add_argument("--local_rank", type=int, default=-1,
421
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
422
423
424
425
426
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
427
428
429
430
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
431
432
433
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

434
    # Setup distant debugging if needed
435
436
437
438
439
440
441
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
442
    # Setup CUDA, GPU & distributed training
443
444
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
445
446
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
447
448
449
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
450
451
        args.n_gpu = 1
    args.device = device
452

thomwolf's avatar
thomwolf committed
453
    # Setup logging
454
455
456
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
457
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
458
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
459

460
461
    # Set seed
    set_seed(args)
462

thomwolf's avatar
thomwolf committed
463
    # Load pretrained model and tokenizer
464
    if args.local_rank not in [-1, 0]:
465
466
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

467
    args.model_type = args.model_type.lower()
468
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
469
470
471
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
472
473

    if args.local_rank == 0:
474
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
475

thomwolf's avatar
thomwolf committed
476
    model.to(args.device)
477

478
479
    logger.info("Training/evaluation parameters %s", args)

thomwolf's avatar
thomwolf committed
480
    # Training
481
    if args.do_train:
482
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
483
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
484
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
485

486

thomwolf's avatar
thomwolf committed
487
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
488
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
489
490
491
492
493
494
495
496
497
498
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
499
500

        # Good practice: save your training arguments together with the trained model
501
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
502

503
504
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
505
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
506
507
508
        model.to(args.device)


thomwolf's avatar
thomwolf committed
509
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
510
511
512
513
514
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
515
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
516

517
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
518

519
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
520
            # Reload the model
521
522
523
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
524
525

            # Evaluate
526
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
527

528
529
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
530

531
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
532

533
    return results
534
535
536
537


if __name__ == "__main__":
    main()