run_squad.py 31.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
Lysandre's avatar
Lysandre committed
19
from transformers.data.processors.squad import SquadV1Processor
20
21
22
23
24

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
25
import glob
26
import timeit
27
28
29
30
31
32
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
46
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
47

Lysandre's avatar
wip  
Lysandre committed
48
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features, read_squad_examples as sread_squad_examples
49

Lysandre's avatar
Lysandre committed
50
from utils_squad import (RawResult, write_predictions,
51
                         RawResultExtended, write_predictions_extended)
52

thomwolf's avatar
thomwolf committed
53
54
55
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
56
57
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

58
59
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
60
61
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
62
63

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
64
65
66
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
67
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
68
69
}

thomwolf's avatar
thomwolf committed
70
71
72
73
74
75
76
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

77
78
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
79

80
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
81
82
83
84
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

85
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
86
87
88
89
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
90
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
91
92
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
93
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
94

95
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
96
97
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
98
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
99
100
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
101
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
102
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
103
104
105
106
107
108
109
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

110
111
112
113
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
114
115
116
117
118
119
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
120
121
122
123
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
124
125
126
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
127
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
128
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
129
130
131

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
132
133
134
135
136
137
138
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
139
            batch = tuple(t.to(args.device) for t in batch)
140
            inputs = {'input_ids':       batch[0],
Simon Layton's avatar
Simon Layton committed
141
142
                      'attention_mask':  batch[1],
                      'start_positions': batch[3],
143
                      'end_positions':   batch[4]}
144
145
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
146
147
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
148
                               'p_mask':       batch[6]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
149
            outputs = model(**inputs)
150
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
151

152
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
153
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
154
155
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
156

157
158
159
160
161
162
163
164
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
165
166
167
168
169
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

170
                optimizer.step()
171
                scheduler.step()  # Update learning rate schedule
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
202
203
204
    if args.local_rank in [-1, 0]:
        tb_writer.close()

205
206
207
208
209
210
211
212
213
214
215
216
217
218
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
219
220
221
222
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

223
224
225
226
227
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
228
    start_time = timeit.default_timer()
229
230
231
232
233
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {'input_ids':      batch[0],
234
                      'attention_mask': batch[1]
thomwolf's avatar
thomwolf committed
235
                      }
236
237
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
238
239
240
241
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
242
243
244
245
246
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
247
248
249
250
251
252
253
254
255
256
257
258
259
            if args.model_type in ['xlnet', 'xlm']:
                # XLNet uses a more complex post-processing procedure
                result = RawResultExtended(unique_id            = unique_id,
                                           start_top_log_probs  = to_list(outputs[0][i]),
                                           start_top_index      = to_list(outputs[1][i]),
                                           end_top_log_probs    = to_list(outputs[2][i]),
                                           end_top_index        = to_list(outputs[3][i]),
                                           cls_logits           = to_list(outputs[4][i]))
            else:
                result = RawResult(unique_id    = unique_id,
                                   start_logits = to_list(outputs[0][i]),
                                   end_logits   = to_list(outputs[1][i]))
            all_results.append(result)
260

261
262
263
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
264
    # Compute predictions
265
266
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
267
268
269
270
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
271
272
273
274
275
276

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
        write_predictions_extended(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
277
278
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
279
280
281
282
283
    else:
        write_predictions(examples, features, all_results, args.n_best_size,
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
284

thomwolf's avatar
thomwolf committed
285
    # Evaluate with the official SQuAD script
286
287
288
289
290
291
292
    evaluate_options = EVAL_OPTS(data_file=args.predict_file,
                                 pred_file=output_prediction_file,
                                 na_prob_file=output_null_log_odds_file)
    results = evaluate_on_squad(evaluate_options)
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
293
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
294
295
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

296
297
298
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
299
        'dev' if evaluate else 'train',
300
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
301
302
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
303
304
305
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
306
307
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_squad_examples(input_file=input_file,
308
309
                                                is_training=not evaluate,
                                                version_2_with_negative=args.version_2_with_negative)
Lysandre's avatar
Lysandre committed
310
311
312
313
314
        keep_n_examples = 1000
        processor = SquadV1Processor()
        values = processor.get_dev_examples("examples/squad")
        examples = values[:keep_n_examples]
        features = squad_convert_examples_to_features(examples=exampless,
Lysandre's avatar
wip  
Lysandre committed
315
316
317
318
319
320
321
322
323
324
                                                tokenizer=tokenizer,
                                                max_seq_length=args.max_seq_length,
                                                doc_stride=args.doc_stride,
                                                max_query_length=args.max_query_length,
                                                is_training=not evaluate,
                                                cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
                                                pad_token_segment_id=3 if args.model_type in ['xlnet'] else 0,
                                                cls_token_at_end=True if args.model_type in ['xlnet'] else False,
                                                sequence_a_is_doc=True if args.model_type in ['xlnet'] else False)
        print("DONE")
Lysandre's avatar
Lysandre committed
325
326
327

        import sys
        sys.exit()
Lysandre's avatar
wip  
Lysandre committed
328
        
thomwolf's avatar
thomwolf committed
329
330
331
332
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
333
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
334
335
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
336
    # Convert to Tensors and build dataset
337
338
339
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
340
341
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
342
    if evaluate:
thomwolf's avatar
thomwolf committed
343
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
344
345
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
346
347
348
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
349
350
351
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
352

353
354
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
355
356
    return dataset

357
358
359
360
361

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
362
363
364
365
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
366
367
368
369
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
370
371
372
373
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
374
375
376
377
378
379
380
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
381
382
383
384
385
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

386
387
388
389
390
391
392
393
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
394
395
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
396
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
397
                        help="Whether to run eval on the dev set.")
398
399
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
400
    parser.add_argument("--do_lower_case", action='store_true',
401
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
402

403
404
405
406
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
407
408
409
410
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
411
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
412
                        help="Weight decay if we apply some.")
413
414
415
416
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
417
418
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
419
420
421
422
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
423
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
424
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
425
426
427
428
429
430
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
431

432
433
434
435
436
437
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
438
    parser.add_argument("--no_cuda", action='store_true',
439
                        help="Whether not to use CUDA when available")
440
441
442
443
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
444
    parser.add_argument('--seed', type=int, default=42,
445
                        help="random seed for initialization")
446

thomwolf's avatar
thomwolf committed
447
    parser.add_argument("--local_rank", type=int, default=-1,
448
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
449
450
451
452
453
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
454
455
456
457
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
458
459
460
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

461
    # Setup distant debugging if needed
462
463
464
465
466
467
468
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
469
    # Setup CUDA, GPU & distributed training
470
471
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
472
473
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
474
475
476
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
477
478
        args.n_gpu = 1
    args.device = device
479

thomwolf's avatar
thomwolf committed
480
    # Setup logging
481
482
483
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
484
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
485
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
486

487
488
    # Set seed
    set_seed(args)
489

thomwolf's avatar
thomwolf committed
490
    # Load pretrained model and tokenizer
491
    if args.local_rank not in [-1, 0]:
492
493
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

494
    args.model_type = args.model_type.lower()
495
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
496
497
498
499
500
501
502
503
504
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
505
506

    if args.local_rank == 0:
507
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
508

thomwolf's avatar
thomwolf committed
509
    model.to(args.device)
510

511
512
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
513
514
515
516
517
518
519
520
521
522
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
523
    # Training
524
    if args.do_train:
525
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
526
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
527
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
528

529

thomwolf's avatar
thomwolf committed
530
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
531
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
532
533
534
535
536
537
538
539
540
541
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
542
543

        # Good practice: save your training arguments together with the trained model
544
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
545

546
547
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
548
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
549
550
551
        model.to(args.device)


thomwolf's avatar
thomwolf committed
552
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
553
554
555
556
557
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
558
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
559

560
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
561

562
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
563
            # Reload the model
564
565
566
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
567
568

            # Evaluate
569
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
570

571
572
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
573

574
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
575

576
    return results
577
578
579
580


if __name__ == "__main__":
    main()