run_squad.py 29.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
20
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
from transformers.data.metrics.squad_metrics import compute_predictions, compute_predictions_extended, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
30
31
32
33
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler

34
35
36
37
38
39
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
40

41
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
42
43
44
45
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
46
47
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
48

Lysandre's avatar
Lysandre committed
49
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
50

Lysandre's avatar
Lysandre committed
51
from utils_squad import (convert_examples_to_features as old_convert, read_squad_examples as old_read, RawResult, write_predictions,
52
                         RawResultExtended, write_predictions_extended)
53

thomwolf's avatar
thomwolf committed
54
55
56
# The follwing import is the official SQuAD evaluation script (2.0).
# You can remove it from the dependencies if you are using this script outside of the library
# We've added it here for automated tests (see examples/test_examples.py file)
57
58
from utils_squad_evaluate import EVAL_OPTS, main as evaluate_on_squad

59
60
logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
61
62
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
63
64

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
65
66
67
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
68
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
69
70
}

thomwolf's avatar
thomwolf committed
71
72
73
74
75
76
77
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

78
79
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
80

81
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
82
83
84
85
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

86
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
87
88
89
90
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
91
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
92
93
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
94
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
95

96
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
97
98
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
99
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
100
101
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
        ]
102
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
103
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
104
105
106
107
108
109
110
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

111
112
113
114
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
121
122
123
124
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
125
126
127
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
128
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
129
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
130
131
132

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
133
134
135
136
137
138
139
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
140
            batch = tuple(t.to(args.device) for t in batch)
141
            inputs = {'input_ids':       batch[0],
Simon Layton's avatar
Simon Layton committed
142
143
                      'attention_mask':  batch[1],
                      'start_positions': batch[3],
144
                      'end_positions':   batch[4]}
145
146
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
147
148
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[5],
thomwolf's avatar
thomwolf committed
149
                               'p_mask':       batch[6]})
Peiqin Lin's avatar
typos  
Peiqin Lin committed
150
            outputs = model(**inputs)
151
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
152

153
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
154
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
155
156
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
157

158
159
160
161
162
163
164
165
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
166
167
168
169
170
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

171
                optimizer.step()
172
                scheduler.step()  # Update learning rate schedule
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
203
204
205
    if args.local_rank in [-1, 0]:
        tb_writer.close()

206
207
208
209
210
211
212
213
214
215
216
217
218
219
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
220
221
222
223
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

224
225
226
227
228
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    all_results = []
229
    start_time = timeit.default_timer()
230
231
232
233
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
234
235
236
237
238
            inputs = {
                'input_ids':      batch[0],
                'attention_mask': batch[1]
            }
            
239
240
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
241
242
243
244
            example_indices = batch[3]
            if args.model_type in ['xlnet', 'xlm']:
                inputs.update({'cls_index': batch[4],
                               'p_mask':    batch[5]})
245
246
247
248
249
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
250
251

            result = SquadResult([to_list(output[i]) for output in outputs] + [unique_id])
252
            all_results.append(result)
253

254
255
256
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
257
    # Compute predictions
258
259
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
260
261
262
263
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
264
265
266

    if args.model_type in ['xlnet', 'xlm']:
        # XLNet uses a more complex post-processing procedure
LysandreJik's avatar
LysandreJik committed
267
        predictions = compute_predictions_extended(examples, features, all_results, args.n_best_size,
268
269
                        args.max_answer_length, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.predict_file,
270
271
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
272
    else:
LysandreJik's avatar
LysandreJik committed
273
        predictions = compute_predictions(examples, features, all_results, args.n_best_size,
274
275
276
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
277

LysandreJik's avatar
LysandreJik committed
278
    results = squad_evaluate(examples, predictions)
279
280
281
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
282
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
283
284
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

285
286
287
    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
    cached_features_file = os.path.join(os.path.dirname(input_file), 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
288
        'dev' if evaluate else 'train',
289
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
290
291
        str(args.max_seq_length)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
292
293
294
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
295
        logger.info("Creating features from dataset file at %s", input_file)
Lysandre's avatar
Lysandre committed
296
297

        processor = SquadV2Processor()
LysandreJik's avatar
LysandreJik committed
298
299
300
301
302
303
        examples = processor.get_dev_examples("examples/squad", only_first=100) if evaluate else processor.get_train_examples("examples/squad")
        # import tensorflow_datasets as tfds
        # tfds_examples = tfds.load("squad")
        # examples = SquadV1Processor().get_examples_from_dataset(tfds_examples["validation"])

        features = squad_convert_examples_to_features( 
Lysandre's avatar
Lysandre committed
304
305
306
307
308
309
310
311
312
313
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
            sequence_a_is_doc=True if args.model_type in ['xlnet'] else False
        )


thomwolf's avatar
thomwolf committed
314
315
316
317
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
318
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
319
320
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
321
    # Convert to Tensors and build dataset
322
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
Lysandre's avatar
Lysandre committed
323
324
    all_input_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
325
326
    all_cls_index = torch.tensor([f.cls_index for f in features], dtype=torch.long)
    all_p_mask = torch.tensor([f.p_mask for f in features], dtype=torch.float)
327
    if evaluate:
thomwolf's avatar
thomwolf committed
328
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
329
330
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_example_index, all_cls_index, all_p_mask)
331
332
333
    else:
        all_start_positions = torch.tensor([f.start_position for f in features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in features], dtype=torch.long)
334
335
336
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                all_start_positions, all_end_positions,
                                all_cls_index, all_p_mask)
thomwolf's avatar
thomwolf committed
337

338
339
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
340
341
    return dataset

342
343
344
345
346

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
347
348
349
350
    parser.add_argument("--train_file", default=None, type=str, required=True,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str, required=True,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
351
352
353
354
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
355
356
357
358
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
359
360
361
362
363
364
365
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
366
367
368
369
370
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

371
372
373
374
375
376
377
378
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
379
380
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
381
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
382
                        help="Whether to run eval on the dev set.")
383
384
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
385
    parser.add_argument("--do_lower_case", action='store_true',
386
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
387

388
389
390
391
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
392
393
394
395
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
396
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
397
                        help="Weight decay if we apply some.")
398
399
400
401
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
402
403
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
404
405
406
407
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
408
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
409
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
410
411
412
413
414
415
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
416

417
418
419
420
421
422
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
423
    parser.add_argument("--no_cuda", action='store_true',
424
                        help="Whether not to use CUDA when available")
425
426
427
428
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
429
    parser.add_argument('--seed', type=int, default=42,
430
                        help="random seed for initialization")
431

thomwolf's avatar
thomwolf committed
432
    parser.add_argument("--local_rank", type=int, default=-1,
433
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
434
435
436
437
438
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
439
440
441
442
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
443
444
445
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

446
    # Setup distant debugging if needed
447
448
449
450
451
452
453
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
454
    # Setup CUDA, GPU & distributed training
455
456
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
457
458
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
459
460
461
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
462
463
        args.n_gpu = 1
    args.device = device
464

thomwolf's avatar
thomwolf committed
465
    # Setup logging
466
467
468
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
469
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
470
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
471

472
473
    # Set seed
    set_seed(args)
474

thomwolf's avatar
thomwolf committed
475
    # Load pretrained model and tokenizer
476
    if args.local_rank not in [-1, 0]:
477
478
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

479
    args.model_type = args.model_type.lower()
480
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
481
482
483
484
485
486
487
488
489
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
490
491

    if args.local_rank == 0:
492
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
493

thomwolf's avatar
thomwolf committed
494
    model.to(args.device)
495

496
497
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
498
499
500
501
502
503
504
505
506
507
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
508
    # Training
509
    if args.do_train:
510
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
511
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
512
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
513

514

thomwolf's avatar
thomwolf committed
515
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
516
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
517
518
519
520
521
522
523
524
525
526
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
527
528

        # Good practice: save your training arguments together with the trained model
529
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
530

531
532
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
533
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
534
535
536
        model.to(args.device)


thomwolf's avatar
thomwolf committed
537
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
538
539
540
541
542
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
543
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
544

545
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
546

547
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
548
            # Reload the model
549
550
551
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
552
553

            # Evaluate
554
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
555

556
557
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
558

559
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
560

561
    return results
562
563
564
565


if __name__ == "__main__":
    main()