test_trainer.py 139 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import json
19
import math
20
import os
21
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import re
23
import subprocess
24
import sys
25
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
26
import unittest
27
from itertools import product
28
from pathlib import Path
29
from typing import Dict, List
30
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
import numpy as np
33
from huggingface_hub import HfFolder, ModelCard, delete_repo, list_repo_commits, list_repo_files
34
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36

37
38
39
40
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
41
    TrainerCallback,
42
    TrainingArguments,
43
    get_polynomial_decay_schedule_with_warmup,
44
45
46
    is_torch_available,
    logging,
)
47
from transformers.hyperparameter_search import ALL_HYPERPARAMETER_SEARCH_BACKENDS
48
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
49
    ENDPOINT_STAGING,
50
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
51
    USER,
52
    CaptureLogger,
53
    LoggingLevel,
54
    TestCasePlus,
55
    backend_device_count,
56
    execute_subprocess_async,
57
    get_gpu_count,
58
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
59
    is_staging_test,
Yih-Dar's avatar
Yih-Dar committed
60
    require_accelerate,
61
    require_bitsandbytes,
62
    require_deepspeed,
63
    require_intel_extension_for_pytorch,
64
    require_optuna,
65
    require_ray,
66
    require_safetensors,
67
    require_sentencepiece,
68
    require_sigopt,
69
    require_tensorboard,
70
71
    require_tokenizers,
    require_torch,
72
73
    require_torch_accelerator,
    require_torch_bf16,
74
    require_torch_gpu,
75
76
    require_torch_multi_accelerator,
    require_torch_non_multi_accelerator,
77
    require_torch_non_multi_gpu,
78
    require_torch_tensorrt_fx,
79
    require_torch_tf32,
80
    require_torch_up_to_2_accelerators,
81
    require_torchdynamo,
82
    require_wandb,
83
    slow,
84
    torch_device,
85
)
86
87
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, HPSearchBackend, get_last_checkpoint
88
from transformers.training_args import OptimizerNames
89
from transformers.utils import (
90
91
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
92
93
94
95
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    is_apex_available,
    is_bitsandbytes_available,
96
    is_safetensors_available,
97
98
    is_torchdistx_available,
)
99
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
100
101
102
103


if is_torch_available():
    import torch
104
    from torch import nn
105
106
    from torch.utils.data import IterableDataset

107
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
108
    from transformers import (
109
        AutoModelForCausalLM,
Julien Chaumond's avatar
Julien Chaumond committed
110
        AutoModelForSequenceClassification,
111
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
112
113
        GlueDataset,
        GlueDataTrainingArguments,
114
115
        GPT2Config,
        GPT2LMHeadModel,
116
        LineByLineTextDataset,
117
        PreTrainedModel,
118
        Trainer,
119
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
120
    )
121
    from transformers.modeling_utils import unwrap_model
122
    from transformers.trainer_pt_utils import AcceleratorConfig
Julien Chaumond's avatar
Julien Chaumond committed
123

124
125
126
    if is_safetensors_available():
        import safetensors.torch

Julien Chaumond's avatar
Julien Chaumond committed
127

128
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
129
130


Sylvain Gugger's avatar
Sylvain Gugger committed
131
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
132
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
133
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
134
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
135
136
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
137
138
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
139

Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
143
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
144
145
146
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
147
148


149
150
151
152
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0
153
    keep_report_to: bool = False
154

155
    def __post_init__(self):
156
        super().__post_init__()
157
158
159
160
        # save resources not dealing with reporting unless specified (also avoids the warning when it's not set)
        # can be explicitly disabled via `keep_report_to`
        if not self.keep_report_to:
            self.report_to = []
161

162

163
164
165
166
167
168
169
170
171
172
173
174
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


175
176
177
178
179
180
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
181
182
        self.xs = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)).astype(np.float32) for s in sizes.repeat(batch_size)]
183
184
185
186
187
188
189
190

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
191
192
193
194
195
196
197
198
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
199

Julien Chaumond's avatar
Julien Chaumond committed
200

201
class RegressionModelConfig(PretrainedConfig):
202
    def __init__(self, a=0, b=0, double_output=False, random_torch=True, **kwargs):
203
204
205
206
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
207
        self.random_torch = random_torch
208
        self.hidden_size = 1
209
210


211
212
213
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
214
215
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
216
217

        def __iter__(self):
218
219
            for i in range(len(self.dataset)):
                yield self.dataset[i]
220

221
222
223
224
225
226
227
228
229
230
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    class MultiLoader:
        def __init__(self, loaders):
            self.loaders = loaders

        def __len__(self):
            return sum(len(loader) for loader in self.loaders)

        def __iter__(self):
            for loader in self.loaders:
                yield from loader

    class CustomDataloaderTrainer(Trainer):
        def get_train_dataloader(self):
            dataloaders = [super().get_train_dataloader(), super().get_train_dataloader()]
            return MultiLoader(dataloaders)

        def get_eval_dataloader(self, eval_dataset):
            dataloaders = [super().get_eval_dataloader(eval_dataset), super().get_eval_dataloader(eval_dataset)]
            return MultiLoader(dataloaders)

251
    class RegressionModel(nn.Module):
252
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
253
            super().__init__()
254
255
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
256
257
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
258

Stas Bekman's avatar
Stas Bekman committed
259
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
            y = input_x * self.a + self.b
            if labels is None:
262
                return (y, y) if self.double_output else (y,)
263
            loss = nn.functional.mse_loss(y, labels)
264
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
265

266
    class RegressionDictModel(nn.Module):
267
268
        def __init__(self, a=0, b=0):
            super().__init__()
269
270
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
271
272
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
273
        def forward(self, input_x, labels=None, **kwargs):
274
275
276
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
277
                result["loss"] = nn.functional.mse_loss(y, labels)
278
279
            return result

280
281
282
283
284
285
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
286
287
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
288
289
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
290
        def forward(self, input_x, labels=None, **kwargs):
291
292
293
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
294
            loss = nn.functional.mse_loss(y, labels)
295
296
            return (loss, y, y) if self.double_output else (loss, y)

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
    class RegressionPreTrainedModelWithGradientCheckpointing(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"
        supports_gradient_checkpointing = True

        def __init__(self, config):
            super().__init__(config)
            self.layers = nn.ModuleList([nn.Linear(config.hidden_size, config.hidden_size) for _ in range(4)])
            self.head = nn.Linear(config.hidden_size, 1)
            self.gradient_checkpointing = False
            self.double_output = config.double_output

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x.unsqueeze(0)

            for layer in self.layers:
                if self.training and self.gradient_checkpointing:
                    outputs = self._gradient_checkpointing_func(layer.__call__, y)
                else:
                    outputs = layer(y)

                y = outputs * 3

            logits = self.head(y)

            if labels is None:
                return (logits, logits) if self.double_output else (logits,)

            loss = nn.functional.mse_loss(logits, labels)

            return (loss, y, y) if self.double_output else (loss, y)

329
330
331
332
333
334
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
335
336
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
337
            self.random_torch = config.random_torch
338
339
340

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
341
342
            if self.random_torch:
                torch_rand = torch.randn(1).squeeze()
343
344
345
            np_rand = np.random.rand()
            rand_rand = random.random()

346
347
348
            if self.random_torch:
                y += 0.05 * torch_rand
            y += 0.05 * torch.tensor(np_rand + rand_rand)
349
350
351

            if labels is None:
                return (y,)
352
            loss = nn.functional.mse_loss(y, labels)
353
354
            return (loss, y)

355
    class TstLayer(nn.Module):
356
357
        def __init__(self, hidden_size):
            super().__init__()
358
359
360
361
362
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
363
364

        def forward(self, x):
365
366
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
367
368
            return self.ln2(x + h + self.bias)

369
370
371
    def get_regression_trainer(
        a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, keep_report_to=False, **kwargs
    ):
Sylvain Gugger's avatar
Sylvain Gugger committed
372
        label_names = kwargs.get("label_names", None)
373
        gradient_checkpointing = kwargs.get("gradient_checkpointing", False)
Sylvain Gugger's avatar
Sylvain Gugger committed
374
375
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
376
377
378
379

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
380
        else:
381
382
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
383
384
385
386
387
388
389
                # We infer the correct model class if one uses gradient_checkpointing or not
                target_cls = (
                    RegressionPreTrainedModel
                    if not gradient_checkpointing
                    else RegressionPreTrainedModelWithGradientCheckpointing
                )
                model = target_cls(config)
390
391
392
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
393
394
395
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
396
        output_dir = kwargs.pop("output_dir", "./regression")
397
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
398

399
        args = RegressionTrainingArguments(output_dir, a=a, b=b, keep_report_to=keep_report_to, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
400
401
402
403
404
405
406
407
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
408
            model_init=model_init,
409
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
410
411
        )

412

413
class TrainerIntegrationCommon:
414
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True, safe_weights=True):
415
416
        weights_file = WEIGHTS_NAME if not safe_weights else SAFE_WEIGHTS_NAME
        file_list = [weights_file, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
417
418
419
420
421
422
423
424
425
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
426
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True, safe_weights=True
427
428
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
429
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
430
431
432
433
434
435
436
437
438
439

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
440
441
442
443
            if not safe_weights:
                state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            else:
                state_dict = safetensors.torch.load_file(os.path.join(checkpoint, SAFE_WEIGHTS_NAME))
444
            best_model.load_state_dict(state_dict)
445
            best_model.to(trainer.args.device)
446
447
448
449
450
451
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

452
453
454
455
456
457
458
459
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
460
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
461
        for log, log1 in zip(log_history, log_history1):
462
463
464
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
465
466
            self.assertEqual(log, log1)

467
    def convert_to_sharded_checkpoint(self, folder, save_safe=True, load_safe=True):
468
        # Converts a checkpoint of a regression model to a sharded checkpoint.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        if load_safe:
            loader = safetensors.torch.load_file
            weights_file = os.path.join(folder, SAFE_WEIGHTS_NAME)
        else:
            loader = torch.load
            weights_file = os.path.join(folder, WEIGHTS_NAME)

        if save_safe:
            extension = "safetensors"
            saver = safetensors.torch.save_file
            index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
            shard_name = SAFE_WEIGHTS_NAME
        else:
            extension = "bin"
            saver = torch.save
            index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
            shard_name = WEIGHTS_NAME

        state_dict = loader(weights_file)

        os.remove(weights_file)
490
491
492
        keys = list(state_dict.keys())

        shard_files = [
493
494
            shard_name.replace(f".{extension}", f"-{idx+1:05d}-of-{len(keys):05d}.{extension}")
            for idx in range(len(keys))
495
496
497
        ]
        index = {"metadata": {}, "weight_map": {key: shard_files[i] for i, key in enumerate(keys)}}

498
        with open(index_file, "w", encoding="utf-8") as f:
499
500
501
502
            content = json.dumps(index, indent=2, sort_keys=True) + "\n"
            f.write(content)

        for param_name, shard_file in zip(keys, shard_files):
503
            saver({param_name: state_dict[param_name]}, os.path.join(folder, shard_file))
504

505
506
507
508

@require_torch
@require_sentencepiece
@require_tokenizers
509
510
511
512
513
514
515
516
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

517
518
    def setUp(self):
        super().setUp()
519
        args = TrainingArguments("..")
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
552
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,)).astype(np.float32)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
589
        trainer.args.seed = 314
590
591
592
593
594
595
596
597
598
599
600
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    def test_gradient_checkpointing(self):
        trainer = get_regression_trainer(
            per_device_train_batch_size=1,
            learning_rate=0.1,
            gradient_checkpointing=True,
            gradient_checkpointing_kwargs={"use_reentrant": False},
        )
        previous_params = {k: v.detach().clone() for k, v in trainer.model.named_parameters()}

        trainer.train()

        # Check if model weights have been updated
        for k, v in trainer.model.named_parameters():
            self.assertFalse(
                torch.allclose(previous_params[k], v, rtol=1e-4, atol=1e-4),
                f"Model weights for {k} have not been updated",
            )

619
    def test_training_loss(self):
620
        n_gpus = max(1, backend_device_count(torch_device))
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

640
641
642
643
644
645
646
647
648
649
650
651
652
653
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
    def test_lr_scheduler_kwargs(self):
        # test scheduler kwargs passed via TrainingArguments
        train_dataset = RegressionDataset()
        model = RegressionModel()
        num_steps, num_warmup_steps = 10, 2
        extra_kwargs = {"power": 5.0, "lr_end": 1e-5}  # Non-default arguments
        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="polynomial",
            lr_scheduler_kwargs=extra_kwargs,
            learning_rate=0.2,
            warmup_steps=num_warmup_steps,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.create_optimizer_and_scheduler(num_training_steps=num_steps)

        # Checking that the scheduler was created
        self.assertIsNotNone(trainer.lr_scheduler)

        # Checking that the correct args were passed
        sched1 = trainer.lr_scheduler
        sched2 = get_polynomial_decay_schedule_with_warmup(
            trainer.optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_steps, **extra_kwargs
        )
        self.assertEqual(sched1.lr_lambdas[0].args, sched2.lr_lambdas[0].args)
        self.assertEqual(sched1.lr_lambdas[0].keywords, sched2.lr_lambdas[0].keywords)

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    def test_reduce_lr_on_plateau_args(self):
        # test passed arguments for a custom ReduceLROnPlateau scheduler
        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)
        args = TrainingArguments(
            "./regression",
            evaluation_strategy="epoch",
            metric_for_best_model="eval_loss",
        )
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.2, patience=5, cooldown=2)
        trainer = Trainer(
            model, args, train_dataset=train_dataset, eval_dataset=eval_dataset, optimizers=(optimizer, lr_scheduler)
        )
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        self.assertEqual(trainer.lr_scheduler.factor, 0.2)
        self.assertEqual(trainer.lr_scheduler.patience, 5)
        self.assertEqual(trainer.lr_scheduler.cooldown, 2)

    def test_reduce_lr_on_plateau(self):
        # test the ReduceLROnPlateau scheduler

        class TrainerWithLRLogs(Trainer):
            def log(self, logs):
                # the LR is computed after metrics and does not exist for the first epoch
                if hasattr(self.lr_scheduler, "_last_lr"):
710
                    logs["learning_rate"] = self.lr_scheduler._last_lr[0]
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
                super().log(logs)

        train_dataset = RegressionDataset(length=64)
        eval_dataset = RegressionDataset(length=64)

        args = TrainingArguments(
            "./regression",
            lr_scheduler_type="reduce_lr_on_plateau",
            evaluation_strategy="epoch",
            metric_for_best_model="eval_loss",
            num_train_epochs=10,
            learning_rate=0.2,
        )
        model = RegressionModel()
        trainer = TrainerWithLRLogs(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()

        self.assertIsInstance(trainer.lr_scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau)
        patience = trainer.lr_scheduler.patience

        logs = trainer.state.log_history[1:]
        best_loss = logs[0]["eval_loss"]
        bad_epochs = 0
        for i, log in enumerate(logs[:-1]):  # Compare learning rate to next epoch's
            loss = log["eval_loss"]
            just_decreased = False
            if loss > best_loss:
                bad_epochs += 1
                if bad_epochs > patience:
740
                    self.assertLess(logs[i + 1]["learning_rate"], log["learning_rate"])
741
742
743
744
745
746
                    just_decreased = True
                    bad_epochs = 0
            else:
                best_loss = loss
                bad_epochs = 0
            if not just_decreased:
747
                self.assertEqual(logs[i + 1]["learning_rate"], log["learning_rate"])
748

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

767
768
    @require_torch_accelerator
    @require_torch_bf16
769
770
771
772
773
774
775
776
777
778
779
780
    def test_mixed_bf16(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

781
782
783
784
785
786
787
788
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):
        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

789
790
791
792
793
794
795

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
796
        args = TrainingArguments("..")
797
798
799
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

800
801
802
803
804
805
806
807
808
809
810
811
812
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
813
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
814
815
816
817
818
819
820
821
822
823
824
825
826
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

827
828
829
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
830
        args = TrainingArguments("./regression", report_to=[])
831
832
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
833
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
834
            if key != "logging_dir":
835
                self.assertEqual(dict1[key], dict2[key])
836

Sylvain Gugger's avatar
Sylvain Gugger committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

853
    @require_torch_bf16
854
855
856
857
    @require_intel_extension_for_pytorch
    def test_number_of_steps_in_training_with_ipex(self):
        for mix_bf16 in [True, False]:
            # Regular training has n_epochs * len(train_dl) steps
858
            trainer = get_regression_trainer(learning_rate=0.1, use_ipex=True, bf16=mix_bf16, use_cpu=True)
859
            train_output = trainer.train()
860
            self.assertEqual(train_output.global_step, self.n_epochs * 64 / trainer.args.train_batch_size)
861
862
863

            # Check passing num_train_epochs works (and a float version too):
            trainer = get_regression_trainer(
864
                learning_rate=0.1, num_train_epochs=1.5, use_ipex=True, bf16=mix_bf16, use_cpu=True
865
866
            )
            train_output = trainer.train()
867
            self.assertEqual(train_output.global_step, int(1.5 * 64 / trainer.args.train_batch_size))
868
869
870

            # If we pass a max_steps, num_train_epochs is ignored
            trainer = get_regression_trainer(
871
                learning_rate=0.1, max_steps=10, use_ipex=True, bf16=mix_bf16, use_cpu=True
872
873
874
875
            )
            train_output = trainer.train()
            self.assertEqual(train_output.global_step, 10)

876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
    @require_bitsandbytes
    def test_rmsprop_bnb(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_8bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_8bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

    @require_bitsandbytes
    def test_rmsprop_bnb_32bit(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)
        with tempfile.TemporaryDirectory() as tmpdir:
            # Trainer without inf/nan filter
            args = TrainingArguments(
                tmpdir, learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, optim="rmsprop_bnb_32bit"
            )
            trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

            # Check that it trains without errors
            trainer.train()

926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    def test_neftune(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        trainer.model = trainer._activate_neftune(trainer.model)

        dummy_input = torch.LongTensor([[1, 0, 1]]).to(torch_device)

        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertFalse(torch.allclose(emb1, emb2), "Neftune noise is not applied!")

        # redefine the model
        tiny_gpt2 = GPT2LMHeadModel(config)
        # Trainer without inf/nan filter
        args = TrainingArguments(
            "./test", learning_rate=1e-9, logging_steps=5, logging_nan_inf_filter=False, neftune_noise_alpha=0.4
        )
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)

        # Check that it trains without errors
        trainer.train()

        # Make sure forward pass works fine
        _ = trainer.model(dummy_input)
        self.assertTrue(len(trainer.model.get_input_embeddings()._forward_hooks) == 0)

        trainer.model.eval()

        # Check that we get identical embeddings just in case
        emb1 = trainer.model.get_input_embeddings()(dummy_input)
        emb2 = trainer.model.get_input_embeddings()(dummy_input)

        self.assertTrue(torch.allclose(emb1, emb2), "Neftune noise is still applied!")

970
    def test_logging_inf_nan_filter(self):
971
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
995
    def test_train_and_eval_dataloaders(self):
996
        n_gpu = max(1, backend_device_count(torch_device))
Sylvain Gugger's avatar
Sylvain Gugger committed
997
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
998
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
999
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
1000
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
1001
1002
1003
1004
1005

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
1006
1007
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
1008
1009
1010
1011
1012
1013
1014
1015
1016

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
1017
1018
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1019

1020
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
1021
        new_eval_dataset = RegressionDataset(length=128)
1022
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
1023

1024
1025
1026
1027
1028
1029
1030
1031
1032
    # tests that we do not require dataloader to have a .dataset attribute
    def test_dataloader_without_dataset(self):
        train_dataset = RegressionDataset(length=128)
        trainer = CustomDataloaderTrainer(
            model=RegressionModel(), train_dataset=train_dataset, eval_dataset=train_dataset
        )
        trainer.train()
        trainer.evaluate()

1033
    @require_torch_multi_accelerator
1034
1035
1036
1037
1038
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
1039
1040
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
1041
1042
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
1043
        self.assertEqual(trainer.args.n_gpu, 1)
1044
1045

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
1046
        self.assertEqual(trainer.get_train_dataloader().total_batch_size, 16)
1047
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
1048
        self.assertEqual(trainer.get_eval_dataloader().total_batch_size, 16)
1049
1050
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
1051
1052
1053
1054
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1055
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
1066
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
1067
1068
1069
1070
1071
1072
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
    def test_evaluate_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy(), jit_mode_eval=True)
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(
            a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy(), jit_mode_eval=True
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
            jit_mode_eval=True,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

1130
    @require_torch_bf16
1131
1132
1133
1134
    @require_intel_extension_for_pytorch
    def test_evaluate_with_ipex(self):
        for mix_bf16 in [True, False]:
            trainer = get_regression_trainer(
1135
                a=1.5, b=2.5, use_ipex=True, compute_metrics=AlmostAccuracy(), bf16=mix_bf16, use_cpu=True
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With a number of elements not a round multiple of the batch size
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                eval_len=66,
                compute_metrics=AlmostAccuracy(),
                bf16=mix_bf16,
1154
                use_cpu=True,
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

            # With logits preprocess
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                use_ipex=True,
                compute_metrics=AlmostAccuracy(),
                preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
                bf16=mix_bf16,
1173
                use_cpu=True,
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
            )
            results = trainer.evaluate()

            x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
            pred = 1.5 * x + 2.5
            expected_loss = ((pred - y) ** 2).mean()
            self.assertAlmostEqual(results["eval_loss"], expected_loss)
            expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
            self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

1196
1197
1198
1199
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
1200
        self.assertEqual(len(preds), 2)
1201
1202
1203
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
1204
1205
1206
1207
1208
1209
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

    def test_predict_with_jit(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, jit_mode_eval=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertEqual(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

        # With more than one output/label of the model
        trainer = get_regression_trainer(
            a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"], jit_mode_eval=True
        )
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
1244
        self.assertEqual(len(preds), 2)
Sylvain Gugger's avatar
Sylvain Gugger committed
1245
1246
1247
1248
1249
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1250
    @require_torch_bf16
1251
1252
1253
    @require_intel_extension_for_pytorch
    def test_predict_with_ipex(self):
        for mix_bf16 in [True, False]:
1254
            trainer = get_regression_trainer(a=1.5, b=2.5, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1255
1256
1257
1258
1259
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With a number of elements not a round multiple of the batch size
1260
            trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, use_ipex=True, bf16=mix_bf16, use_cpu=True)
1261
1262
1263
1264
1265
1266
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

            # With more than one output of the model
            trainer = get_regression_trainer(
1267
                a=1.5, b=2.5, double_output=True, use_ipex=True, bf16=mix_bf16, use_cpu=True
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
            )
            preds = trainer.predict(trainer.eval_dataset).predictions
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

            # With more than one output/label of the model
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                double_output=True,
                label_names=["labels", "labels_2"],
                use_ipex=True,
                bf16=mix_bf16,
1283
                use_cpu=True,
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
            )
            outputs = trainer.predict(trainer.eval_dataset)
            preds = outputs.predictions
            labels = outputs.label_ids
            x = trainer.eval_dataset.x
            self.assertEqual(len(preds), 2)
            self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
            self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
            self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
            self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

1331
    def test_log_level(self):
1332
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
1333
1334
1335
        logger = logging.get_logger()
        log_info_string = "Running training"

1336
1337
        # test with the default log_level - should be the same as before and thus we test depending on is_info
        is_info = logging.get_verbosity() <= 20
1338
1339
1340
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
1341
1342
1343
1344
        if is_info:
            self.assertIn(log_info_string, cl.out)
        else:
            self.assertNotIn(log_info_string, cl.out)
1345

1346
1347
1348
1349
1350
1351
        with LoggingLevel(logging.INFO):
            # test with low log_level - lower than info
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="debug")
                trainer.train()
            self.assertIn(log_info_string, cl.out)
1352

1353
1354
1355
1356
1357
1358
        with LoggingLevel(logging.INFO):
            # test with high log_level - should be quiet
            with CaptureLogger(logger) as cl:
                trainer = get_regression_trainer(log_level="error")
                trainer.train()
            self.assertNotIn(log_info_string, cl.out)
1359

1360
1361
1362
1363
1364
1365
1366
1367
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1368
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
1369
1370
1371
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    def test_save_checkpoints_is_atomic(self):
        class UnsaveableTokenizer(PreTrainedTokenizerBase):
            def save_pretrained(self, *args, **kwargs):
                raise OSError("simulated file write error")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            # Attach unsaveable tokenizer to partially fail checkpointing
            trainer.tokenizer = UnsaveableTokenizer()
            with self.assertRaises(OSError) as _context:
                trainer.train()
            assert get_last_checkpoint(tmpdir) is None

1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
    @require_safetensors
    def test_safe_checkpoints(self):
        for save_safetensors in [True, False]:
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, save_safetensors=save_safetensors)
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), safe_weights=save_safetensors
                )

            # With a regular model that is not a PreTrainedModel
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    output_dir=tmpdir, save_steps=5, pretrained=False, save_safetensors=save_safetensors
                )
                trainer.train()
                self.check_saved_checkpoints(
                    tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False, safe_weights=save_safetensors
                )

1405
    @require_torch_multi_accelerator
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

1418
    @require_torch_up_to_2_accelerators
1419
    def test_can_resume_training(self):
1420
1421
1422
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
1423

1424
        with tempfile.TemporaryDirectory() as tmpdir:
1425
1426
1427
1428
1429
1430
1431
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "logging_steps": 5,
            }
1432
            trainer = get_regression_trainer(**kwargs)
1433
1434
1435
1436
1437
1438
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1439
            # Reinitialize trainer
1440
            trainer = get_regression_trainer(**kwargs)
1441

1442
            trainer.train(resume_from_checkpoint=checkpoint)
1443
1444
1445
1446
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1447
            self.check_trainer_state_are_the_same(state, state1)
1448

1449
1450
1451
1452
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1453
            trainer = get_regression_trainer(**kwargs)
1454

1455
            trainer.train(resume_from_checkpoint=checkpoint)
1456
1457
1458
1459
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1460
            self.check_trainer_state_are_the_same(state, state1)
1461

1462
1463
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
1464
1465
1466
1467
1468
1469
1470
            kwargs = {
                "output_dir": tmpdir,
                "train_len": 128,
                "save_steps": 5,
                "learning_rate": 0.1,
                "pretrained": False,
            }
1471
1472

            trainer = get_regression_trainer(**kwargs)
1473
1474
1475
1476
1477
1478
1479
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
1480
            trainer = get_regression_trainer(**kwargs)
1481

1482
            trainer.train(resume_from_checkpoint=checkpoint)
1483
1484
1485
1486
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1487
            self.check_trainer_state_are_the_same(state, state1)
1488

1489
1490
1491
1492
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
1493
            trainer = get_regression_trainer(**kwargs)
1494

1495
            trainer.train(resume_from_checkpoint=checkpoint)
1496
1497
1498
1499
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1500
            self.check_trainer_state_are_the_same(state, state1)
1501

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

1517
1518
1519
    @unittest.skip(
        reason="@muellerzr: Fix once Trainer can take an accelerate configuration. Need to set `seedable_sampler=True`."
    )
1520
    def test_resume_training_with_randomness(self):
1521
1522
1523
1524
        # For more than 1 GPUs, since the randomness is introduced in the model and with DataParallel (which is used
        # in this test for more than 2 GPUs), the calls to the torch RNG will happen in a random order (sometimes
        # GPU 0 will call first and sometimes GPU 1).
        random_torch = not torch.cuda.is_available() or torch.cuda.device_count() <= 1
1525
1526
1527
1528
1529
1530

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

1531
1532
1533
        with self.subTest("Test every step"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)
1534

1535
1536
1537
            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
1538

1539
1540
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
1541

1542
1543
1544
1545
1546
            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

1547
1548
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570

        with self.subTest("Test every epoch"):
            config = RegressionModelConfig(a=0, b=2, random_torch=random_torch)
            model = RegressionRandomPreTrainedModel(config)

            tmp_dir = self.get_auto_remove_tmp_dir()
            args = RegressionTrainingArguments(tmp_dir, save_strategy="epoch", learning_rate=0.1)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()

            model = RegressionRandomPreTrainedModel(config)
            trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

            checkpoints = [d for d in os.listdir(tmp_dir) if d.startswith("checkpoint-")]
            # There should be one checkpoint per epoch.
            self.assertEqual(len(checkpoints), 3)
            checkpoint_dir = sorted(checkpoints, key=lambda x: int(x.replace("checkpoint-", "")))[0]

            trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, checkpoint_dir))
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1571

1572
1573
            self.assertAlmostEqual(a, a1, delta=1e-5)
            self.assertAlmostEqual(b, b1, delta=1e-5)
1574

1575
    @slow
Yih-Dar's avatar
Yih-Dar committed
1576
    @require_accelerate
1577
    @require_torch_non_multi_accelerator
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
    def test_auto_batch_size_finder(self):
        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True

        SRC_DIR = os.path.abspath(
            os.path.join(os.path.dirname(__file__), "..", "..", "examples", "pytorch", "text-classification")
        )
        sys.path.append(SRC_DIR)
        import run_glue

        with tempfile.TemporaryDirectory() as tmpdir:
            testargs = f"""
                run_glue.py
1591
                --model_name_or_path distilbert/distilbert-base-uncased
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
                --task_name mrpc
                --do_train
                --do_eval
                --max_seq_len 128
                --per_device_train_batch_size 4096
                --learning_rate 2e-5
                --num_train_epochs 1
                --output_dir {tmpdir}
                --auto_find_batch_size 0
                """.split()
            with self.assertRaises(RuntimeError):
                with patch.object(sys, "argv", testargs):
                    run_glue.main()

        testargs[-1] = "1"
        with patch.object(sys, "argv", testargs):
            run_glue.main()

1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
    @require_deepspeed
    def test_auto_batch_size_with_resume_from_checkpoint_with_deepspeed(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
                if state.train_batch_size >= 16:
                    raise RuntimeError("CUDA out of memory.")

        deepspeed = {
            "zero_optimization": {
                "stage": 1,
            },
            "train_batch_size": "auto",
            "train_micro_batch_size_per_gpu": "auto",
        }

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
            deepspeed=deepspeed,
        )
1642
1643
1644
1645
        # Note: This can have issues, for now we don't support this functionality
        # ref: https://github.com/huggingface/transformers/pull/29057
        with self.assertRaises(NotImplementedError):
            _ = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
1646

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
    def test_auto_batch_size_with_resume_from_checkpoint(self):
        train_dataset = RegressionDataset(length=128)

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()

        class MockCudaOOMCallback(TrainerCallback):
            def on_step_end(self, args, state, control, **kwargs):
                # simulate OOM on the first step
1658
                if state.train_batch_size >= 16:
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
                    raise RuntimeError("CUDA out of memory.")

        args = RegressionTrainingArguments(
            tmp_dir,
            do_train=True,
            max_steps=2,
            save_steps=1,
            per_device_train_batch_size=16,
            auto_find_batch_size=True,
        )
        trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
        trainer.train()
        # After `auto_find_batch_size` is ran we should now be at 8
        self.assertEqual(trainer._train_batch_size, 8)

        # We can then make a new Trainer
        trainer = Trainer(model, args, train_dataset=train_dataset)
        # Check we are at 16 to start
1677
        self.assertEqual(trainer._train_batch_size, 16 * max(trainer.args.n_gpu, 1))
1678
1679
1680
1681
        trainer.train(resume_from_checkpoint=True)
        # We should be back to 8 again, picking up based upon the last ran Trainer
        self.assertEqual(trainer._train_batch_size, 8)

1682
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
1683
    def test_training_with_resume_from_checkpoint_false(self):
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

1696
    @require_torch_up_to_2_accelerators
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
    def test_resume_training_with_shard_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")
            self.convert_to_sharded_checkpoint(checkpoint)

            # Reinitialize trainer
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)

            trainer.train(resume_from_checkpoint=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1721
    @require_safetensors
1722
    @require_torch_up_to_2_accelerators
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
    def test_resume_training_with_safe_checkpoint(self):
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

        for initial_safe in [False, True]:
            for loaded_safe in [False, True]:
                with tempfile.TemporaryDirectory() as tmpdir:
                    trainer = get_regression_trainer(
                        output_dir=tmpdir,
                        train_len=128,
                        save_steps=5,
                        learning_rate=0.1,
                        save_safetensors=initial_safe,
                    )
                    trainer.train()
                    (a, b) = trainer.model.a.item(), trainer.model.b.item()
                    state = dataclasses.asdict(trainer.state)

                    checkpoint = os.path.join(tmpdir, "checkpoint-5")
                    self.convert_to_sharded_checkpoint(checkpoint, load_safe=initial_safe, save_safe=loaded_safe)

                    # Reinitialize trainer
                    trainer = get_regression_trainer(
                        output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, save_safetensors=loaded_safe
                    )

                    trainer.train(resume_from_checkpoint=checkpoint)
                    (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
                    state1 = dataclasses.asdict(trainer.state)
                    self.assertEqual(a, a1)
                    self.assertEqual(b, b1)
                    self.check_trainer_state_are_the_same(state, state1)

1757
    @require_torch_up_to_2_accelerators
1758
    def test_resume_training_with_gradient_accumulation(self):
1759
1760
1761
1762
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

1778
1779
1780
1781
1782
1783
1784
1785
1786
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
1787

1788
            trainer.train(resume_from_checkpoint=checkpoint)
1789
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1790
1791
1792
1793
1794
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

1795
    @require_torch_up_to_2_accelerators
1796
    def test_resume_training_with_frozen_params(self):
1797
1798
1799
1800
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1830
1831
1832
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1833
            self.check_trainer_state_are_the_same(state, state1)
1834

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1845
                save_steps=5,
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1861
                save_steps=5,
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1878
                save_strategy="epoch",
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1897
                save_steps=5,
1898
                load_best_model_at_end=True,
1899
                pretrained=False,
1900
1901
1902
1903
1904
1905
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
    @require_safetensors
    def test_load_best_model_from_safetensors(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        for save_safetensors, pretrained in product([False, True], [False, True]):
            with tempfile.TemporaryDirectory() as tmpdir:
                trainer = get_regression_trainer(
                    a=1.5,
                    b=2.5,
                    output_dir=tmpdir,
                    learning_rate=0.1,
                    eval_steps=5,
                    evaluation_strategy="steps",
                    save_steps=5,
                    load_best_model_at_end=True,
                    save_safetensors=save_safetensors,
                    pretrained=pretrained,
                )
                self.assertFalse(trainer.args.greater_is_better)
                trainer.train()
                self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=pretrained, safe_weights=save_safetensors)
                self.check_best_model_has_been_loaded(
                    tmpdir, 5, total, trainer, "eval_loss", is_pretrained=pretrained, safe_weights=save_safetensors
                )

1930
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1931
    def test_trainer_eval_mrpc(self):
1932
        MODEL_ID = "google-bert/bert-base-cased-finetuned-mrpc"
Julien Chaumond's avatar
Julien Chaumond committed
1933
1934
1935
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1936
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1937
        )
1938
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1939

1940
        training_args = TrainingArguments(output_dir="./examples", use_cpu=True)
Julien Chaumond's avatar
Julien Chaumond committed
1941
1942
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1943
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1944

1945
1946
    @slow
    def test_trainer_eval_multiple(self):
1947
        MODEL_ID = "openai-community/gpt2"
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
        )
        for example in dataset.examples:
            example["labels"] = example["input_ids"]
        training_args = TrainingArguments(
            output_dir="./examples",
            use_cpu=True,
            per_device_eval_batch_size=1,
        )
        trainer = Trainer(
            model=model,
            args=training_args,
            eval_dataset={
                "data1": dataset,
                "data2": dataset,
            },
        )
        result = trainer.evaluate()
        self.assertIn("eval_data1_loss", result)
        self.assertIn("eval_data2_loss", result)

1974
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1975
    def test_trainer_eval_lm(self):
1976
        MODEL_ID = "distilbert/distilroberta-base"
Julien Chaumond's avatar
Julien Chaumond committed
1977
1978
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1979
1980
1981
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1982
1983
        )
        self.assertEqual(len(dataset), 31)
1984

1985
    def test_training_iterable_dataset(self):
1986
1987
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
1988
1989
        # Adding one column not used by the model should have no impact
        train_dataset = SampleIterableDataset(label_names=["labels", "extra"])
1990

1991
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1992
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1993
        trainer.train()
1994
        self.assertEqual(trainer.state.global_step, 4)
1995

1996
1997
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1998
1999
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

2000
2001
2002
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
2003
2004
        # Adding one column not used by the model should have no impact
        eval_dataset = SampleIterableDataset(label_names=["labels", "extra"])
2005
2006
2007
2008

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
2009

2010
2011
2012
2013
2014
2015
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
2016

2017
2018
2019
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
2020

2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
2041
2042
        # Adding one column not used by the model should have no impact
        test_dataset = SampleIterableDataset(length=66, label_names=["labels", "extra"])
2043
2044
2045
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2061

2062
2063
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
2064
2065
2066
2067
2068
2069
2070
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
2071
                evaluation_strategy=IntervalStrategy.EPOCH,
2072
                save_strategy=IntervalStrategy.EPOCH,
2073
2074
2075
2076
2077
2078
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
2079
2080

        # Invalid inputs to trainer with early stopping callback result in assertion error
2081
2082
2083
2084
2085
2086
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
2087
                evaluation_strategy=IntervalStrategy.EPOCH,
2088
2089
2090
2091
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
2092
            self.assertEqual(trainer.state.global_step, 0)
2093
2094
2095
2096
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
2097

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2098
2099
2100
2101
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
2102
2103
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
2104
2105
2106
2107
2108

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
2109
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
2110

2111
2112
2113
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
2130
2131
2132
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
2133
2134
2135
2136
2137
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
2138
2139
2140
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
2141
2142
2143
2144
2145
2146
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

2147
2148
2149
2150
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
2151
        if backend_device_count(torch_device) > 0:
2152
2153
2154
2155
2156
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
2157
        if backend_device_count(torch_device) > 0:
2158
2159
2160
2161
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
2162
        if backend_device_count(torch_device) > 0:
2163
2164
2165
2166
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):
        # with mem metrics enabled
2167
        trainer = get_regression_trainer(skip_memory_metrics=False)
2168
2169
2170
2171
2172
2173
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

2174
    @require_torch_accelerator
2175
2176
2177
2178
    def test_fp16_full_eval(self):
        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2179
        n_gpus = backend_device_count(torch_device)
2180
2181

        bs = 8
2182
        eval_len = 16 * n_gpus
2183
2184
2185
2186
2187
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2188
        # 1. with fp16_full_eval disabled
2189
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2209
        # 2. with fp16_full_eval enabled
2210
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

2231
2232
    @require_torch_non_multi_gpu
    @require_torchdynamo
2233
    @require_torch_tensorrt_fx
2234
    def test_torchdynamo_full_eval(self):
Yih-Dar's avatar
Yih-Dar committed
2235
2236
        import torchdynamo

2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params are somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. Default - without TorchDynamo
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len)
        metrics = trainer.evaluate()
        original_eval_loss = metrics["eval_loss"]
        del trainer

        # 2. TorchDynamo eager
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="eager")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
        del trainer
Yih-Dar's avatar
Yih-Dar committed
2258
        torchdynamo.reset()
2259
2260
2261
2262
2263

        # 3. TorchDynamo nvfuser
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="nvfuser")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2264
        torchdynamo.reset()
2265

2266
2267
2268
2269
        # 4. TorchDynamo fx2trt
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, torchdynamo="fx2trt")
        metrics = trainer.evaluate()
        self.assertAlmostEqual(metrics["eval_loss"], original_eval_loss)
Yih-Dar's avatar
Yih-Dar committed
2270
        torchdynamo.reset()
2271

2272
    @unittest.skip("torch 2.0.0 gives `ModuleNotFoundError: No module named 'torchdynamo'`.")
2273
2274
2275
2276
    @require_torch_non_multi_gpu
    @require_torchdynamo
    def test_torchdynamo_memory(self):
        # torchdynamo at the moment doesn't support DP/DDP, therefore require a single gpu
Yih-Dar's avatar
Yih-Dar committed
2277
2278
        import torchdynamo

2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
        class CustomTrainer(Trainer):
            def compute_loss(self, model, inputs, return_outputs=False):
                x = inputs["x"]
                output = model(x)
                if self.args.n_gpu == 1:
                    return output.mean()
                return output

        class MyModule(torch.nn.Module):
            """Simple module that does aggressive fusion"""

            def __init__(self):
                super().__init__()

            def forward(self, x):
                for _ in range(20):
Yih-Dar's avatar
Yih-Dar committed
2295
                    x = torch.cos(x)
2296
2297
2298
2299
                return x

        mod = MyModule()

2300
        # 1. without TorchDynamo (eager baseline)
2301
2302
2303
2304
2305
2306
2307
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        trainer = CustomTrainer(model=mod)
        # warmup
        for _ in range(10):
            orig_loss = trainer.training_step(mod, {"x": a})

2308
2309
2310
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2311
        torch.cuda.reset_peak_memory_stats()
2312

2313
2314
        orig_loss = trainer.training_step(mod, {"x": a})
        orig_peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2315
        torchdynamo.reset()
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
        del trainer

        # 2. TorchDynamo nvfuser
        a = torch.ones(1024, 1024, device="cuda", requires_grad=True)
        a.grad = None
        args = TrainingArguments(output_dir="None", torchdynamo="nvfuser")
        trainer = CustomTrainer(model=mod, args=args)
        # warmup
        for _ in range(10):
            loss = trainer.training_step(mod, {"x": a})

2327
2328
2329
        # resets
        gc.collect()
        torch.cuda.empty_cache()
2330
        torch.cuda.reset_peak_memory_stats()
2331

2332
2333
        loss = trainer.training_step(mod, {"x": a})
        peak_mem = torch.cuda.max_memory_allocated()
Yih-Dar's avatar
Yih-Dar committed
2334
        torchdynamo.reset()
2335
2336
2337
2338
2339
2340
2341
2342
2343
        del trainer

        # Functional check
        self.assertAlmostEqual(loss, orig_loss)

        # AOT Autograd recomputaion and nvfuser recomputation optimization
        # aggressively fuses the operations and reduce the memory footprint.
        self.assertGreater(orig_peak_mem, peak_mem * 2)

2344
2345
    @require_torch_accelerator
    @require_torch_bf16
2346
2347
2348
2349
2350
2351
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
2352
        n_gpus = backend_device_count(torch_device)
2353
2354
2355
2356
2357
2358
2359
2360

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

2361
        # 1. with bf16_full_eval disabled
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

2382
        # 2. with bf16_full_eval enabled
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

2404
    def test_no_wd_param_group(self):
2405
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
2406
2407
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
2408
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']  # fmt: skip
2409
2410
2411
2412
2413
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

2414
    @slow
2415
    @require_torch_multi_accelerator
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
    def test_end_to_end_example(self):
        # Tests that `translation.py` will run without issues
        script_path = os.path.abspath(
            os.path.join(
                os.path.dirname(__file__), "..", "..", "examples", "pytorch", "translation", "run_translation.py"
            )
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            command = [
                "accelerate",
                "launch",
                script_path,
                "--model_name_or_path",
2430
                "google-t5/t5-small",
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
                "--per_device_train_batch_size",
                "1",
                "--output_dir",
                tmpdir,
                "--overwrite_output_dir",
                "--do_train",
                "--max_train_samples",
                "64",
                "--num_train_epochs",
                "1",
                "--dataset_name",
                "wmt16",
                "--dataset_config",
                "ro-en",
                "--source_lang",
                "en",
                "--target_lang",
                "ro",
                "--do_predict",
                "--max_predict_samples",
                "64",
                "--predict_with_generate",
                "--ddp_timeout",
                "60",
            ]
            execute_subprocess_async(command)
            # successful return here == success - any errors would have caused an error or a timeout in the sub-call

2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
    def test_accelerator_config_empty(self):
        # Checks that a config can be made with the defaults if not passed
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_yaml(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            path_file = Path(tmp_dir) / "accelerator_config.json"
            with open(path_file, "w") as f:
                accelerator_config = {
                    "split_batches": True,
                    "dispatch_batches": True,
                    "even_batches": False,
                    "use_seedable_sampler": False,
                }
                json.dump(accelerator_config, f)
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=path_file)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

    def test_accelerator_config_from_dataclass(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        accelerator_config = AcceleratorConfig(
            split_batches=True, dispatch_batches=True, even_batches=False, use_seedable_sampler=False
        )
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()
        with tempfile.TemporaryDirectory() as tmp_dir:
            args = RegressionTrainingArguments(output_dir=tmp_dir, accelerator_config=accelerator_config)
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, False)

    def test_accelerator_config_from_partial(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves one option as something *not* basic
            args = RegressionTrainingArguments(
                output_dir=tmp_dir,
                accelerator_config={
                    "split_batches": True,
                },
            )
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)
            self.assertEqual(trainer.accelerator.even_batches, True)
            self.assertEqual(trainer.accelerator.use_seedable_sampler, True)

    def test_accelerator_config_from_dict_with_deprecated_args(self):
        # Checks that accelerator kwargs can be passed through
        # and the accelerator is initialized respectively
        # and maintains the deprecated args if passed in
        with tempfile.TemporaryDirectory() as tmp_dir:
            config = RegressionModelConfig(a=1.5, b=2.5)
            model = RegressionPreTrainedModel(config)
            eval_dataset = SampleIterableDataset()

            # Leaves all options as something *not* basic
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "split_batches": True,
                    },
                    dispatch_batches=False,
                )
                self.assertIn("dispatch_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.dispatch_batches, False)
            self.assertEqual(trainer.accelerator.split_batches, True)
            with self.assertWarns(FutureWarning) as cm:
                args = RegressionTrainingArguments(
                    output_dir=tmp_dir,
                    accelerator_config={
                        "even_batches": False,
                    },
                    split_batches=True,
                )
                self.assertIn("split_batches", str(cm.warnings[0].message))
            trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset)
            self.assertEqual(trainer.accelerator.split_batches, True)
            self.assertEqual(trainer.accelerator.even_batches, False)
            self.assertEqual(trainer.accelerator.dispatch_batches, None)

2599

Sylvain Gugger's avatar
Sylvain Gugger committed
2600
2601
2602
2603
2604
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2605
2606
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
2607
2608
2609

    @classmethod
    def tearDownClass(cls):
2610
2611
2612
2613
2614
2615
2616
        for model in [
            "test-trainer",
            "test-trainer-epoch",
            "test-trainer-step",
            "test-trainer-tensorboard",
            "test-trainer-tags",
        ]:
2617
            try:
2618
                delete_repo(token=cls._token, repo_id=model)
2619
2620
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
2621
2622

        try:
2623
            delete_repo(token=cls._token, repo_id="valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2624
2625
2626
2627
2628
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
2629
2630
2631
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
2632
                hub_token=self._token,
2633
2634
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2635
2636
2637
2638
2639
2640

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

2641
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
2642
2643
2644
2645
2646
2647
2648
2649
2650

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
2651
2652
2653
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
2654
2655
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
2656
            )
2657
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
2658
2659
2660
2661
2662

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
2663
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2664

2665
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2666
2667
2668
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
2687
2688
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
2689
2690
2691
2692
                save_strategy="epoch",
            )
            trainer.train()

2693
2694
2695
2696
2697
        commits = list_repo_commits(f"{USER}/test-trainer-epoch", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
        for i in range(1, 4):
            self.assertIn(f"Training in progress, epoch {i}", commits)
2698
2699

    def test_push_to_hub_with_saves_each_n_steps(self):
2700
        num_gpus = max(1, backend_device_count(torch_device))
2701
2702
2703
        if num_gpus > 2:
            return

2704
2705
2706
2707
2708
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
2709
2710
                # To avoid any flakiness if the training goes faster than the uploads.
                hub_always_push=True,
2711
2712
2713
2714
2715
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

2716
2717
2718
        commits = list_repo_commits(f"{USER}/test-trainer-step", token=self._token)
        commits = [c.title for c in commits]
        self.assertIn("initial commit", commits)
2719

2720
2721
2722
2723
        # max_steps depend on the number of available GPUs
        max_steps = math.ceil(trainer.args.num_train_epochs * len(trainer.get_train_dataloader()))
        for i in range(5, max_steps, 5):
            self.assertIn(f"Training in progress, step {i}", commits)
2724

2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
    @require_tensorboard
    def test_push_to_hub_with_tensorboard_logs(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tensorboard"),
                hub_token=self._token,
                save_strategy="epoch",
                report_to=["tensorboard"],
                keep_report_to=True,
            )
            trainer.train()
            # Push the runs via `push_to_hub()`
            trainer.push_to_hub()

        files = list_repo_files(f"{USER}/test-trainer-tensorboard", token=self._token)
        found_log = False
        for f in files:
            if len(f.split("runs")) > 1 and "events.out.tfevents" in f:
                found_log = True

        assert found_log is True, "No tensorboard log found in repo"

2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
    def test_push_to_hub_tags(self):
        # Checks if `trainer.push_to_hub()` works correctly by adding the desired
        # tag without having to pass `tags` in `push_to_hub`
        # see:
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-tags"),
                push_to_hub=True,
                hub_token=self._token,
            )

            trainer.model.add_model_tags(["test-trainer-tags"])

            url = trainer.push_to_hub()

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

            self.assertEqual(repo_name, f"{USER}/test-trainer-tags")

            model_card = ModelCard.load(repo_name)
            self.assertTrue("test-trainer-tags" in model_card.data.tags)

Sylvain Gugger's avatar
Sylvain Gugger committed
2772

2773
2774
@require_torch
@require_optuna
2775
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
2776
    def setUp(self):
2777
        args = TrainingArguments("..")
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

2802
2803
2804
2805
2806
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2807
                evaluation_strategy=IntervalStrategy.EPOCH,
2808
                save_strategy=IntervalStrategy.EPOCH,
2809
2810
2811
2812
2813
2814
2815
2816
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
2817
2818


2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
@require_torch
@require_optuna
class TrainerHyperParameterMultiObjectOptunaIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments("..")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

        def compute_objective(metrics: Dict[str, float]) -> List[float]:
            return metrics["eval_loss"], metrics["eval_accuracy"]

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=10,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
                compute_metrics=AlmostAccuracy(),
            )
            trainer.hyperparameter_search(
                direction=["minimize", "maximize"],
                hp_space=hp_space,
                hp_name=hp_name,
                n_trials=4,
                compute_objective=compute_objective,
            )


2875
2876
2877
2878
@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
2879
        args = TrainingArguments("..")
2880
2881
2882
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

2883
    def ray_hyperparameter_search(self):
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
2896
2897
2898
2899
2900
2901
2902
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
2914
                evaluation_strategy=IntervalStrategy.EPOCH,
2915
                save_strategy=IntervalStrategy.EPOCH,
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
2937
2938


2939
@slow
2940
2941
2942
2943
@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
2944
        args = TrainingArguments("..")
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

2999
3000
3001
3002
3003
    default_lion_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "lr": TrainingArguments.learning_rate,
    }

3004
3005
3006
3007
3008
3009
3010
    default_anyprecision_kwargs = {
        "use_kahan_summation": False,
        "momentum_dtype": torch.float32,
        "variance_dtype": torch.float32,
        "compensation_buffer_dtype": torch.bfloat16,
    }

3011
3012
    optim_test_params = [
        (
3013
            TrainingArguments(optim=OptimizerNames.ADAMW_HF, output_dir="None"),
3014
3015
3016
3017
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3018
            TrainingArguments(optim=OptimizerNames.ADAMW_HF.value, output_dir="None"),
3019
3020
3021
3022
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
3023
            TrainingArguments(optim=OptimizerNames.ADAMW_TORCH, output_dir="None"),
3024
3025
3026
3027
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
3028
            TrainingArguments(optim=OptimizerNames.ADAFACTOR, output_dir="None"),
3029
3030
3031
3032
3033
3034
3035
3036
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
3037

3038
3039
3040
3041
3042
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
3043
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3044
3045
3046
3047
3048
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )

3049
3050
3051
3052
3053
    if is_bitsandbytes_available():
        import bitsandbytes as bnb

        optim_test_params.append(
            (
3054
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3055
                bnb.optim.AdamW,
3056
3057
3058
3059
                default_adam_kwargs,
            )
        )

3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                bnb.optim.AdamW,
                default_adam_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                bnb.optim.Lion,
                default_lion_kwargs,
            )
        )

3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
    if is_torchdistx_available():
        import torchdistx

        optim_test_params.append(
            (
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                torchdistx.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )
        )

3119
3120
3121

@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
3122
3123
    def check_optim_and_kwargs(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
3124
3125
3126
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

3127
        for p, v in expected_kwargs.items():
3128
3129
3130
3131
3132
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
3133
    def test_optim_supported(self, training_args: TrainingArguments, expected_cls, expected_kwargs):
3134
        # exercises all the valid --optim options
3135
        self.check_optim_and_kwargs(training_args, expected_cls, expected_kwargs)
3136

3137
        trainer = get_regression_trainer(**training_args.to_dict())
3138
3139
3140
3141
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
3142
3143
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam. It only has to return the
        # class given, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
3144
3145
3146
3147
3148
3149
3150
3151
3152
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3153
                TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None"),
3154
                mock.optimizers.FusedAdam,
3155
                default_adam_kwargs,
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
3166

3167
3168
3169
3170
3171
3172
3173
3174
3175
    def test_bnb_adam8bit(self):
        # Pretend that Bits and Bytes is installed and mock bnb.optim.Adam8bit exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use Adam8bit. It only has to return the
        # class given, so mocking bnb.optim.Adam8bit should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
3176
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
3177
3178
3179
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
3180
                TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None"),
3181
                mock.optim.AdamW,
3182
                default_adam_kwargs,
3183
3184
            )

3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
    def test_bnb_paged_adam8bit_alias(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_paged_adam8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.AdamW": mock.optim.AdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None"),
                mock.optim.AdamW,
                default_adam_kwargs,
            )

    def test_bnb_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion8bit(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

    def test_bnb_paged_lion(self):
        mock = Mock()
        modules = {
            "bitsandbytes": mock,
            "bitsandbytes.optim": mock.optim,
            "bitsandbytes.optim.Lion": mock.optim.Lion,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None"),
                mock.optim.Lion,
                default_lion_kwargs,
            )

3283
3284
3285
3286
3287
    def test_bnb_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_BNB, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
Younes Belkada's avatar
Younes Belkada committed
3288
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
3289
3290
3291
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
    def test_bnb_paged_adam_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_adam8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_ADAMW_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

    def test_bnb_paged_lion8bit_no_bnb(self):
        args = TrainingArguments(optim=OptimizerNames.PAGED_LION_8BIT, output_dir="None")

        # Pretend that bnb does not exist, even if installed. By setting bnb to None, importing
        # bnb will fail even if bnb is installed.
        with patch.dict("sys.modules", {"bitsandbytes.optim": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
    def test_anyprecision_adamw(self):
        # Pretend that torchdistx is installed and mock torchdistx.optimizers.AnyPrecisionAdamW exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use AnyPrecisioinAdamW. It only has to return the
        # class given, so mocking torchdistx.optimizers.AnyPrecisionAdamW should be fine for testing and allow
        # the test to run without requiring a bnb installation.
        mock = Mock()
        modules = {
            "torchdistx": mock,
            "torchdistx.optimizers": mock.optimizers,
            "torchdistx.optimizers.AnyPrecisionAdamW.": mock.optimizers.AnyPrecisionAdamW,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None"),
                mock.optimizers.AnyPrecisionAdamW,
                dict(default_adam_kwargs, **default_anyprecision_kwargs),
            )

    def test_no_torchdistx_anyprecision_adamw(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_ANYPRECISION, output_dir="None")

        # Pretend that torchdistx does not exist, even if installed. By setting torchdistx to None, importing
        # torchdistx.optimizers will fail even if torchdistx is installed.
        with patch.dict("sys.modules", {"torchdistx.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)

3355
3356
3357
3358
3359

@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
3360
        args = TrainingArguments("..")
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )
3409
3410
3411
3412
3413
3414
3415
3416


class HyperParameterSearchBackendsTest(unittest.TestCase):
    def test_hyperparameter_search_backends(self):
        self.assertEqual(
            list(ALL_HYPERPARAMETER_SEARCH_BACKENDS.keys()),
            list(HPSearchBackend),
        )