test_modeling_common.py 46.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import random
19
import tempfile
thomwolf's avatar
thomwolf committed
20
import unittest
21
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
22

23
from transformers import is_torch_available
24
from transformers.testing_utils import require_multigpu, require_torch, slow, torch_device
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
if is_torch_available():
thomwolf's avatar
thomwolf committed
28
    import torch
29
    import numpy as np
thomwolf's avatar
thomwolf committed
30

31
32
33
34
35
36
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
37
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
38
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
39
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
40
41
42
43
44
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
45
        top_k_top_p_filtering,
46
    )
thomwolf's avatar
thomwolf committed
47

48

49
50
51
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
52
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
53
            setattr(configs_no_init, key, 1e-10)
54
55
    return configs_no_init

thomwolf's avatar
thomwolf committed
56

57
58
59
60
61
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
62
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
67
    test_missing_keys = True
Pradhy729's avatar
Pradhy729 committed
68
    test_chunking = False
69
70
    is_encoder_decoder = False

71
72
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
73
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
74
            inputs_dict = {
75
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
76
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
77
                else v
78
79
                for k, v in inputs_dict.items()
            }
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
104
105
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
106
    def test_save_load(self):
107
108
109
110
111
112
113
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
114
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
115
            out_2 = outputs[0].cpu().numpy()
116
            out_2[np.isnan(out_2)] = 0
117

118
            with tempfile.TemporaryDirectory() as tmpdirname:
119
120
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
121
                model.to(torch_device)
122
                with torch.no_grad():
123
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
124

125
126
127
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
128
129
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
130

Patrick von Platen's avatar
Patrick von Platen committed
131
    def test_initialization(self):
132
133
134
135
136
137
138
139
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
140
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
141
142
143
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
144

Patrick von Platen's avatar
Patrick von Platen committed
145
    def test_determinism(self):
146
147
148
149
150
151
152
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
153
154
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
155
156
157
158
159
160
161
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
162
    def test_attention_outputs(self):
163
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
164
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
165
166
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
167
168
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
169
170
171
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
172
173

        for model_class in self.all_model_classes:
174
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
175
            inputs_dict["output_hidden_states"] = False
176
177
178
179
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
180
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
181
            attentions = outputs[-1]
182
183
184
185
186
187
188
189
190
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
191
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
192
            attentions = outputs[-1]
193
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
194
195
196
197
198
199
200
201
202
203
204

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
205
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
206

207
            if self.is_encoder_decoder:
208
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
209
                decoder_attention_idx = 1
210

211
212
213
214
215
216
217
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                    decoder_attention_idx += 1
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Sam Shleifer's avatar
Sam Shleifer committed
218
219
220
221
222
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
223
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
224
                self.assertListEqual(
225
226
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
227
                )
thomwolf's avatar
thomwolf committed
228

229
            # Check attention is always last and order is fine
230
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
231
            inputs_dict["output_hidden_states"] = True
232
233
234
235
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
236
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
237
238
239
240
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
241
242
243
244
245
246
247
248
249
250
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
251

Patrick von Platen's avatar
Patrick von Platen committed
252
    def test_torchscript(self):
253
254
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
255

Patrick von Platen's avatar
Patrick von Platen committed
256
    def test_torchscript_output_attentions(self):
257
258
259
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
260

Patrick von Platen's avatar
Patrick von Platen committed
261
    def test_torchscript_output_hidden_state(self):
262
263
264
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
265

266
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
267
        if not self.test_torchscript:
268
            return
269

270
271
272
273
274
275
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
276
            inputs = self._prepare_for_class(inputs_dict, model_class)["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
277

278
279
280
281
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
282

283
            with tempfile.TemporaryDirectory() as tmp_dir_name:
284
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
285

286
287
288
289
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
290

291
292
293
294
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
295

296
297
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
298

299
300
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
301

302
303
304
305
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
306

307
            models_equal = True
308
309
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
310
311
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
312

313
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
314

Patrick von Platen's avatar
Patrick von Platen committed
315
316
    def test_headmasking(self):
        if not self.test_head_masking:
317
            return
318

319
320
321
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
322

323
        inputs_dict["output_attentions"] = True
324
325
326
327
328
329
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
330

331
332
333
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
334
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
335
336
337
338
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
339
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
369
370
    def test_head_pruning(self):
        if not self.test_pruning:
371
372
373
            return

        for model_class in self.all_model_classes:
374
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
375

376
377
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
378

379
            inputs_dict["output_attentions"] = True
380
381
382
383
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
384
385
386
387
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
388
389
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
390
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
391

392
            attentions = outputs[-1]
393

394
395
396
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
397

Patrick von Platen's avatar
Patrick von Platen committed
398
399
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
400
            return
LysandreJik's avatar
LysandreJik committed
401

402
        for model_class in self.all_model_classes:
403
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
404
405
406

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
407

408
            inputs_dict["output_attentions"] = True
409
410
411
412
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
413
414
415
416
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
417
            model.prune_heads(heads_to_prune)
418

419
            with tempfile.TemporaryDirectory() as temp_dir_name:
420
421
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
422
                model.to(torch_device)
423

424
            with torch.no_grad():
425
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
426
427
428
429
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
430

Patrick von Platen's avatar
Patrick von Platen committed
431
432
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
433
            return
434

435
        for model_class in self.all_model_classes:
436
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
437

438
439
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
440

441
            inputs_dict["output_attentions"] = True
442
            config.output_hidden_states = False
443

444
445
446
447
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
448
            config.pruned_heads = heads_to_prune
449

450
451
452
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
453

454
            with torch.no_grad():
455
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
456
            attentions = outputs[-1]
457

458
459
460
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
461

Patrick von Platen's avatar
Patrick von Platen committed
462
463
    def test_head_pruning_integration(self):
        if not self.test_pruning:
464
            return
465

466
        for model_class in self.all_model_classes:
467
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
468

469
470
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
471

472
            inputs_dict["output_attentions"] = True
473
            config.output_hidden_states = False
474

475
476
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
477

478
479
480
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
481

482
            with torch.no_grad():
483
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
484
            attentions = outputs[-1]
485

486
487
488
489
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
490

491
            with tempfile.TemporaryDirectory() as temp_dir_name:
492
493
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
494
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
495

496
            with torch.no_grad():
497
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
498
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
499

500
501
502
503
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
504

505
506
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
507

508
            with torch.no_grad():
509
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
510
            attentions = outputs[-1]
511

512
513
514
515
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
516

517
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
518

Patrick von Platen's avatar
Patrick von Platen committed
519
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
520
        def check_hidden_states_output(inputs_dict, config, model_class):
521
            model = model_class(config)
522
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
523
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
524

thomwolf's avatar
thomwolf committed
525
            with torch.no_grad():
526
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
527
            hidden_states = outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
528

Joseph Liu's avatar
Joseph Liu committed
529
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
533
534
535
536
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

537
            self.assertListEqual(
Patrick von Platen's avatar
Patrick von Platen committed
538
                list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size],
539
            )
thomwolf's avatar
thomwolf committed
540

Joseph Liu's avatar
Joseph Liu committed
541
542
543
544
545
546
547
548
549
550
551
552
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Pradhy729's avatar
Pradhy729 committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def test_feed_forward_chunking(self):
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_chunking:
            return

        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
576
    def test_resize_tokens_embeddings(self):
577
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
578
        if not self.test_resize_embeddings:
579
580
581
582
583
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
584
            model.to(torch_device)
585

Patrick von Platen's avatar
Patrick von Platen committed
586
587
588
            if self.model_tester.is_training is False:
                model.eval()

589
590
591
592
593
594
595
596
597
598
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
599
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
600
            model(**self._prepare_for_class(inputs_dict, model_class))
601
602
603
604
605
606
607

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

608
609
610
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
611
            model(**self._prepare_for_class(inputs_dict, model_class))
612

613
614
615
616
617
618
619
620
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
621
    def test_model_common_attributes(self):
622
623
624
625
626
627
628
629
630
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

631
    def test_correct_missing_keys(self):
632
633
        if not self.test_missing_keys:
            return
634
635
636
637
638
639
640
641
642
643
644
645
646
647
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(tuple_object, dict_object, atol=1e-5),
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}",
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
754
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
755

756
757
758
759
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
760
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
761
            model.eval()
762

763
764
765
766
767
768
769
770
771
772
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

773
774
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
775
                inputs["inputs_embeds"] = wte(input_ids)
776
            else:
777
778
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
779

thomwolf's avatar
thomwolf committed
780
            with torch.no_grad():
781
                model(**inputs)
782

783
    def test_lm_head_model_random_no_beam_search_generate(self):
784
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
785
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
786

Patrick von Platen's avatar
Patrick von Platen committed
787
788
789
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

790
        # iterate over all generative models
791
        for model_class in self.all_generative_model_classes:
792
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
793
            model.eval()
794
795

            if config.bos_token_id is None:
796
                # if bos token id is not defined, model needs input_ids
797
                with self.assertRaises(AssertionError):
798
                    model.generate(do_sample=True, max_length=5)
799
                # num_return_sequences = 1
800
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
801
            else:
802
                # num_return_sequences = 1
803
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
804

805
            with self.assertRaises(AssertionError):
806
                # generating multiple sequences when no beam search generation
807
808
809
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

810
811
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
812
813

            # check bad words tokens language generation
814
            # create list of 1-seq bad token and list of 2-seq of bad tokens
815
816
817
818
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
819
            output_tokens = model.generate(
820
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
821
            )
822
            # only count generated tokens
823
824
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
825

826
827
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
828
829
830
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
831

Patrick von Platen's avatar
Patrick von Platen committed
832
833
834
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

835
        for model_class in self.all_generative_model_classes:
836
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
837
            model.eval()
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
857
858
859
860
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
861
            output_tokens = model.generate(
862
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
863
            )
864
            # only count generated tokens
865
866
867
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

868
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
869
        # special tokens cannot be bad tokens
870
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
871
872
873
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
874
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
875
876
877
878
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

879
    def _check_generated_ids(self, output_ids):
880
881
882
883
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

884
885
886
887
888
889
890
891
892
893
894
895
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
919
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
920

921

922
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
923
924


thomwolf's avatar
thomwolf committed
925
def ids_tensor(shape, vocab_size, rng=None, name=None):
926
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
927
    if rng is None:
928
        rng = global_rng
thomwolf's avatar
thomwolf committed
929

thomwolf's avatar
thomwolf committed
930
931
932
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
933

thomwolf's avatar
thomwolf committed
934
935
936
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
937

938
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
939
940


941
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
942
    """Creates a random float32 tensor"""
943
944
945
946
947
948
949
950
951
952
953
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

954
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
955
956


957
@require_torch
thomwolf's avatar
thomwolf committed
958
class ModelUtilsTest(unittest.TestCase):
959
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
960
    def test_model_from_pretrained(self):
961
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
977
978
979
980
981
982


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
983
    def test_top_k_top_p_filtering(self):
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))