"tests/test_backbone_common.py" did not exist on "48706c7178127e7bcd6cccd90d941801e071a4a2"
test_trainer.py 69.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import math
19
import os
20
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import re
22
import subprocess
23
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
24
import unittest
25
from pathlib import Path
Julien Chaumond's avatar
Julien Chaumond committed
26

Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
import numpy as np

29
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
30
from requests.exceptions import HTTPError
31
32
33
34
35
36
37
38
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
    is_torch_available,
    logging,
)
39
from transformers.file_utils import WEIGHTS_NAME
40
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
43
    ENDPOINT_STAGING,
    PASS,
    USER,
44
    CaptureLogger,
45
    TestCasePlus,
46
    get_gpu_count,
47
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
48
    is_staging_test,
49
    require_optuna,
50
    require_ray,
51
    require_sentencepiece,
52
    require_sigopt,
53
54
    require_tokenizers,
    require_torch,
55
    require_torch_bf16,
56
    require_torch_gpu,
57
    require_torch_multi_gpu,
58
    require_torch_non_multi_gpu,
59
    require_torch_tf32,
60
    require_torch_up_to_2_gpus,
61
62
    slow,
)
63
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
64
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
65
66
67
68


if is_torch_available():
    import torch
69
    from torch import nn
70
71
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
72
73
    from transformers import (
        AutoModelForSequenceClassification,
74
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
75
76
        GlueDataset,
        GlueDataTrainingArguments,
77
78
        GPT2Config,
        GPT2LMHeadModel,
79
        LineByLineTextDataset,
80
        PreTrainedModel,
81
        Trainer,
82
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
83
    )
84
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
85
86


87
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
88
89


Sylvain Gugger's avatar
Sylvain Gugger committed
90
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
91
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
92
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
93
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
96
97
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
98

Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
102
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
103
104
105
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
106
107


108
109
110
111
112
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

113
114
115
116
117
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

118

119
120
121
122
123
124
125
126
127
128
129
130
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
150
151
152
153
154
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
155

Julien Chaumond's avatar
Julien Chaumond committed
156

157
158
159
160
161
162
class RegressionModelConfig(PretrainedConfig):
    def __init__(self, a=0, b=0, double_output=False, **kwargs):
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
163
        self.hidden_size = 1
164
165


166
167
168
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
169
170
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
171
172

        def __iter__(self):
173
174
            for i in range(len(self.dataset)):
                yield self.dataset[i]
175

176
177
178
179
180
181
182
183
184
185
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

186
    class RegressionModel(nn.Module):
187
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
188
            super().__init__()
189
190
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
191
192
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
193

Stas Bekman's avatar
Stas Bekman committed
194
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
195
196
            y = input_x * self.a + self.b
            if labels is None:
197
                return (y, y) if self.double_output else (y,)
198
            loss = nn.functional.mse_loss(y, labels)
199
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
200

201
    class RegressionDictModel(nn.Module):
202
203
        def __init__(self, a=0, b=0):
            super().__init__()
204
205
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
206
207
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
208
        def forward(self, input_x, labels=None, **kwargs):
209
210
211
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
212
                result["loss"] = nn.functional.mse_loss(y, labels)
213
214
            return result

215
216
217
218
219
220
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
221
222
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
223
224
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
225
        def forward(self, input_x, labels=None, **kwargs):
226
227
228
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
229
            loss = nn.functional.mse_loss(y, labels)
230
231
            return (loss, y, y) if self.double_output else (loss, y)

232
233
234
235
236
237
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
238
239
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
240
241
242
243
244
245
246
247
248
249
250

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            torch_rand = torch.randn(1).squeeze()
            np_rand = np.random.rand()
            rand_rand = random.random()

            y += 0.05 * torch_rand + 0.05 * torch.tensor(np_rand + rand_rand)

            if labels is None:
                return (y,)
251
            loss = nn.functional.mse_loss(y, labels)
252
253
            return (loss, y)

254
    class TstLayer(nn.Module):
255
256
        def __init__(self, hidden_size):
            super().__init__()
257
258
259
260
261
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
262
263

        def forward(self, x):
264
265
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
266
267
            return self.ln2(x + h + self.bias)

268
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
269
270
271
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
272
273
274
275

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
276
        else:
277
278
279
280
281
282
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
283
284
285
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
286
        output_dir = kwargs.pop("output_dir", "./regression")
287
288

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
292
293
294
295
296
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
297
            model_init=model_init,
Sylvain Gugger's avatar
Sylvain Gugger committed
298
299
        )

300

301
class TrainerIntegrationCommon:
302
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
303
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
304
305
306
307
308
309
310
311
312
313
314
315
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
316
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
317
318
319
320
321
322
323
324
325
326
327
328

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
329
            best_model.to(trainer.args.device)
330
331
332
333
334
335
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

336
337
338
339
340
341
342
343
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
344
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
345
        for log, log1 in zip(log_history, log_history1):
346
347
348
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
349
350
            self.assertEqual(log, log1)

351
352
353
354

@require_torch
@require_sentencepiece
@require_tokenizers
355
356
357
358
359
360
361
362
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
    @require_torch_gpu
    @require_torch_bf16
    def test_mixed_bf16(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

494
495
496
497
498
499
500
501
502
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

503
504
505
506
507
508
509
510
511
512
513

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

514
515
516
517
518
519
520
521
522
523
524
525
526
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
527
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
528
529
530
531
532
533
534
535
536
537
538
539
540
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

541
542
543
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
544
        args = TrainingArguments("./regression", report_to=[])
545
546
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
547
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
548
            if key != "logging_dir":
549
                self.assertEqual(dict1[key], dict2[key])
550

Sylvain Gugger's avatar
Sylvain Gugger committed
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

567
    def test_logging_inf_nan_filter(self):
568
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
592
    def test_train_and_eval_dataloaders(self):
593
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
594
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
595
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
596
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
597
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
598
599
600
601
602

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
603
604
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
605
606
607
608
609
610
611
612
613

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
614
615
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
616

617
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
618
        new_eval_dataset = RegressionDataset(length=128)
619
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
620

621
622
623
624
625
626
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
627
628
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
629
630
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
631
        self.assertEqual(trainer.args.n_gpu, 1)
632
633
634
635
636
637
638

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
639
640
641
642
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
643
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
644
645
646
647
648
649
650
651
652
653
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
654
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

673
674
675
676
677
678
679
680
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
681
682
683
684
685
686
687
688
689
690
691
692
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

729
    def test_log_level(self):
730
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
731
732
733
        logger = logging.get_logger()
        log_info_string = "Running training"

734
        # test with the default log_level - should be info and thus log on the main process
735
736
737
738
739
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
        self.assertIn(log_info_string, cl.out)

740
        # test with low log_level - lower than info
741
742
743
744
745
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

746
        # test with high log_level - should be quiet
747
748
749
750
751
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

752
753
754
755
756
757
758
759
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
760
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
761
762
763
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

764
765
766
767
768
769
770
771
772
773
774
775
776
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

777
    @require_torch_up_to_2_gpus
778
    def test_can_resume_training(self):
779
780
781
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
782

783
        with tempfile.TemporaryDirectory() as tmpdir:
784
785
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer = get_regression_trainer(**kwargs)
786
787
788
789
790
791
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

792
            # Reinitialize trainer
793
            trainer = get_regression_trainer(**kwargs)
794

795
            trainer.train(resume_from_checkpoint=checkpoint)
796
797
798
799
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
800
            self.check_trainer_state_are_the_same(state, state1)
801

802
803
804
805
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
806
            trainer = get_regression_trainer(**kwargs)
807

808
            trainer.train(resume_from_checkpoint=checkpoint)
809
810
811
812
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
813
            self.check_trainer_state_are_the_same(state, state1)
814

815
816
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
817
818
819
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False)

            trainer = get_regression_trainer(**kwargs)
820
821
822
823
824
825
826
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
827
            trainer = get_regression_trainer(**kwargs)
828

829
            trainer.train(resume_from_checkpoint=checkpoint)
830
831
832
833
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
834
            self.check_trainer_state_are_the_same(state, state1)
835

836
837
838
839
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
840
            trainer = get_regression_trainer(**kwargs)
841

842
            trainer.train(resume_from_checkpoint=checkpoint)
843
844
845
846
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
847
            self.check_trainer_state_are_the_same(state, state1)
848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

864
    @require_torch_non_multi_gpu
865
    def test_resume_training_with_randomness(self):
866
867
        # This test will fail flakily for more than 1 GPUs since the result will be slightly more different
        # TODO: investigate why it fails for 2 GPUs?
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train()
        (a, b) = trainer.model.a.item(), trainer.model.b.item()

        model = RegressionRandomPreTrainedModel(config)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
        (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

889
890
        self.assertAlmostEqual(a, a1, delta=1e-8)
        self.assertAlmostEqual(b, b1, delta=1e-8)
891

892
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
893
    def test_training_with_resume_from_checkpoint_false(self):
894
895
896
897
898
899
900
901
902
903
904
905
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

906
    @require_torch_up_to_2_gpus
907
    def test_resume_training_with_gradient_accumulation(self):
908
909
910
911
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

927
928
929
930
931
932
933
934
935
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
936

937
            trainer.train(resume_from_checkpoint=checkpoint)
938
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
939
940
941
942
943
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

944
    @require_torch_up_to_2_gpus
945
    def test_resume_training_with_frozen_params(self):
946
947
948
949
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
979
980
981
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
982
            self.check_trainer_state_are_the_same(state, state1)
983

984
985
986
987
988
989
990
991
992
993
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
994
                save_steps=5,
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1010
                save_steps=5,
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1027
                save_strategy="epoch",
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1046
                save_steps=5,
1047
                load_best_model_at_end=True,
1048
                pretrained=False,
1049
1050
1051
1052
1053
1054
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1055
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1056
1057
1058
1059
1060
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1061
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1062
        )
1063
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1064
1065
1066
1067

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1068
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1069

1070
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1071
1072
1073
1074
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1075
1076
1077
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1078
1079
        )
        self.assertEqual(len(dataset), 31)
1080

1081
    def test_training_iterable_dataset(self):
1082
1083
1084
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
        train_dataset = SampleIterableDataset()
1085

1086
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1087
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1088
        trainer.train()
1089
        self.assertEqual(trainer.state.global_step, 4)
1090

1091
1092
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1093
1094
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1095
1096
1097
1098
1099
1100
1101
    def test_training_finite_iterable_dataset(self):
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)

        batch_size = 1
        num_samples = 10

1102
        available_steps = num_samples // batch_size
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

        data = FiniteIterableDataset(length=num_samples)
        train_args = TrainingArguments(
            ".",
            max_steps=available_steps + 1,  # set a higher number than actually available
            per_device_train_batch_size=batch_size,
        )
        trainer = Trainer(model, train_dataset=data, args=train_args)
        with self.assertLogs("transformers.trainer", level="WARNING") as logs:
            trainer.train()
        self.assertIn(f"stopping training at step {available_steps}!", logs.output[0])

1115
1116
1117
1118
1119
1120
1121
1122
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1123

1124
1125
1126
1127
1128
1129
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1130

1131
1132
1133
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1134

1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        test_dataset = SampleIterableDataset(length=66)
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1174

1175
1176
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1177
1178
1179
1180
1181
1182
1183
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1184
                evaluation_strategy=IntervalStrategy.EPOCH,
1185
                save_strategy=IntervalStrategy.EPOCH,
1186
1187
1188
1189
1190
1191
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1192
1193

        # Invalid inputs to trainer with early stopping callback result in assertion error
1194
1195
1196
1197
1198
1199
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1200
                evaluation_strategy=IntervalStrategy.EPOCH,
1201
1202
1203
1204
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1205
            self.assertEqual(trainer.state.global_step, 0)
1206
1207
1208
1209
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1210

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1211
1212
1213
1214
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1215
1216
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1217
1218
1219
1220
1221

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1222
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1223

1224
1225
1226
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1243
1244
1245
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1246
1247
1248
1249
1250
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1251
1252
1253
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1254
1255
1256
1257
1258
1259
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):

        # with mem metrics enabled
1281
        trainer = get_regression_trainer(skip_memory_metrics=False)
1282
1283
1284
1285
1286
1287
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1288
1289
1290
1291
1292
1293
    @require_torch_gpu
    def test_fp16_full_eval(self):

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1294
        n_gpus = get_gpu_count()
1295
1296

        bs = 8
1297
        eval_len = 16 * n_gpus
1298
1299
1300
1301
1302
1303
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. with mem metrics enabled
1304
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

        # 2. with mem metrics disabled
1325
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
    @require_torch_gpu
    @require_torch_bf16
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. with mem metrics enabled
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

        # 2. with mem metrics disabled
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

1406
    def test_no_wd_param_group(self):
1407
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1418

Sylvain Gugger's avatar
Sylvain Gugger committed
1419
1420
1421
1422
1423
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1424
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1425
1426
1427

    @classmethod
    def tearDownClass(cls):
1428
1429
        for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step"]:
            try:
1430
                delete_repo(token=cls._token, name=model)
1431
1432
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
1433
1434

        try:
1435
            delete_repo(token=cls._token, name="test-trainer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1436
1437
1438
1439
1440
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
1441
1442
1443
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
1444
                hub_token=self._token,
1445
1446
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1447
1448
1449
1450
1451
1452

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

1453
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1454
1455
1456
1457
1458
1459
1460
1461
1462

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
1463
1464
1465
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
1466
1467
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
1468
            )
1469
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1470
1471
1472
1473
1474

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
1475
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1476

1477
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1478
1479
1480
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="epoch",
            )
            trainer.train()

        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-epoch", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
            expected_commits = [f"Training in progress, epoch {i}" for i in range(3, 0, -1)]
            expected_commits.append("initial commit")
            self.assertListEqual(commits, expected_commits)

    def test_push_to_hub_with_saves_each_n_steps(self):
1511
1512
1513
1514
        num_gpus = max(1, get_gpu_count())
        if num_gpus > 2:
            return

1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-step", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
1528
1529
            total_steps = 20 // num_gpus
            expected_commits = [f"Training in progress, step {i}" for i in range(total_steps, 0, -5)]
1530
1531
1532
            expected_commits.append("initial commit")
            self.assertListEqual(commits, expected_commits)

Sylvain Gugger's avatar
Sylvain Gugger committed
1533

1534
1535
@require_torch
@require_optuna
1536
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

1563
1564
1565
1566
1567
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1568
                evaluation_strategy=IntervalStrategy.EPOCH,
1569
                save_strategy=IntervalStrategy.EPOCH,
1570
1571
1572
1573
1574
1575
1576
1577
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

1588
    def ray_hyperparameter_search(self):
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
1601
1602
1603
1604
1605
1606
1607
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1619
                evaluation_strategy=IntervalStrategy.EPOCH,
1620
                save_strategy=IntervalStrategy.EPOCH,
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692


@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )