test_trainer.py 24.4 KB
Newer Older
1
import dataclasses
2
3
import os
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
4
5
import unittest

6
import datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
7
8
import numpy as np

9
10
from transformers import AutoTokenizer, PretrainedConfig, TrainingArguments, is_torch_available
from transformers.file_utils import WEIGHTS_NAME
11
from transformers.testing_utils import get_tests_dir, require_torch, slow
Julien Chaumond's avatar
Julien Chaumond committed
12
13
14
15


if is_torch_available():
    import torch
16
17
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
18
19
20
21
    from transformers import (
        AutoModelForSequenceClassification,
        GlueDataset,
        GlueDataTrainingArguments,
22
        LineByLineTextDataset,
23
        PreTrainedModel,
24
        Trainer,
25
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
26
27
28
    )


29
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
30
31


Sylvain Gugger's avatar
Sylvain Gugger committed
32
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
33
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
34
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
35
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
36
37
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
40

Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
43
44
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
48
49
50
51
52
53
54
55
56
57


class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
58

Julien Chaumond's avatar
Julien Chaumond committed
59

60
61
62
63
64
65
66
67
class RegressionModelConfig(PretrainedConfig):
    def __init__(self, a=0, b=0, double_output=False, **kwargs):
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output


68
69
70
71
72
73
74
75
76
77
78
79
80
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
        def __init__(self, file_path):
            self.file_path = file_path

        def parse_file(self):
            f = open(self.file_path, "r")
            return f.readlines()

        def __iter__(self):
            return iter(self.parse_file())

Sylvain Gugger's avatar
Sylvain Gugger committed
81
    class RegressionModel(torch.nn.Module):
82
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())
86
87
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
88

Sylvain Gugger's avatar
Sylvain Gugger committed
89
        def forward(self, input_x=None, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
            y = input_x * self.a + self.b
            if labels is None:
92
                return (y, y) if self.double_output else (y,)
Sylvain Gugger's avatar
Sylvain Gugger committed
93
            loss = torch.nn.functional.mse_loss(y, labels)
94
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
95

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
            self.a = torch.nn.Parameter(torch.tensor(config.a).float())
            self.b = torch.nn.Parameter(torch.tensor(config.b).float())
            self.double_output = config.double_output

        def forward(self, input_x=None, labels=None, **kwargs):
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
            loss = torch.nn.functional.mse_loss(y, labels)
            return (loss, y, y) if self.double_output else (loss, y)

113
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
117
118
119
120
121
        if pretrained:
            config = RegressionModelConfig(a=a, b=b, double_output=double_output)
            model = RegressionPreTrainedModel(config)
        else:
            model = RegressionModel(a=a, b=b, double_output=double_output)
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
125
126
        output_dir = kwargs.pop("output_dir", "./regression")
        args = TrainingArguments(output_dir, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
132
133
134
135
136
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
        )

137

Julien Chaumond's avatar
Julien Chaumond committed
138
139
@require_torch
class TrainerIntegrationTest(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
140
141
142
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
157

158
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
159
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
160
161
162
163
164
165
166
167
168
169
170
171
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
172
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
173
174
175
176
177
178
179
180
181
182
183
184

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
185
            best_model.to(trainer.args.device)
186
187
188
189
190
191
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

192
193
194
195
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
        args = TrainingArguments("./regression")
196
197
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
198
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
199
            if key != "logging_dir":
200
                self.assertEqual(dict1[key], dict2[key])
201

Sylvain Gugger's avatar
Sylvain Gugger committed
202
203
204
205
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
206
        self.check_trained_model(trainer.model)
Sylvain Gugger's avatar
Sylvain Gugger committed
207
208
209
210

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
211
        self.check_trained_model(trainer.model, alternate_seed=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
230
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
231
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
232
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
233
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
234
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
237
238
239

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
240
241
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
242
243
244
245
246
247
248
249
250

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
251
252
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
253

254
        # Check passing a new dataset for evaluation wors
Sylvain Gugger's avatar
Sylvain Gugger committed
255
        new_eval_dataset = RegressionDataset(length=128)
256
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
257
258
259
260
261

    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
262
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
263
264
265
266
267
268
269
270
271
272
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
273
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

292
293
294
295
296
297
298
299
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
300
301
302
303
304
305
306
307
308
309
310
311
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

312
    def test_trainer_with_datasets(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
313
314
315
        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
316
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch")
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
334
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

349
350
351
        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

370
371
372
373
374
375
376
377
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
378
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
379
380
381
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    def test_can_resume_training(self):
        if torch.cuda.device_count() > 2:
            # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
            # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
            # won't be the same since the training dataloader is shuffled).
            return
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
            model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.assertEqual(state, state1)

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
            model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            model.load_state_dict(state_dict)
            trainer = Trainer(model, trainer.args, train_dataset=trainer.train_dataset)

            trainer.train(model_path=checkpoint)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.assertEqual(state, state1)

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        # Save is done every eval regardless of the strategy
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
492
                pretrained=False,
493
494
495
496
497
498
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

499
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
500
501
502
503
504
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
505
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
506
        )
507
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
508
509
510
511

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
512
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
513

514
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
515
516
517
518
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
519
520
521
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
522
523
        )
        self.assertEqual(len(dataset), 31)
524
525
526
527
528
529
530
531
532

    def test_trainer_iterable_dataset(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-cased"
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        train_dataset = SampleIterableDataset(PATH_SAMPLE_TEXT)
        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
548
549
550
551
552
553
554
555
556
557
558
559
560

    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
            self.assertEqual(trainer.model, trainer._actual_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(trainer._actual_model(wrapped_model_to_check).config, "total_flos", 0), 0)

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
        assert_flos_extraction(trainer, torch.nn.DataParallel(trainer.model))