test_trainer.py 57.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import math
19
import os
20
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import re
22
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
23
import unittest
24
from pathlib import Path
Julien Chaumond's avatar
Julien Chaumond committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
import numpy as np

Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
30
from transformers import AutoTokenizer, IntervalStrategy, PretrainedConfig, TrainingArguments, is_torch_available
31
from transformers.file_utils import WEIGHTS_NAME
32
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
    ENDPOINT_STAGING,
    PASS,
    USER,
36
    TestCasePlus,
37
    get_gpu_count,
38
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    is_staging_test,
40
    require_datasets,
41
    require_optuna,
42
    require_ray,
43
44
45
    require_sentencepiece,
    require_tokenizers,
    require_torch,
46
    require_torch_gpu,
47
    require_torch_multi_gpu,
48
49
    slow,
)
50
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
51
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
52
53
54
55


if is_torch_available():
    import torch
56
    from torch import nn
57
58
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
59
60
    from transformers import (
        AutoModelForSequenceClassification,
61
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
62
63
        GlueDataset,
        GlueDataTrainingArguments,
64
65
        GPT2Config,
        GPT2LMHeadModel,
66
        LineByLineTextDataset,
67
        PreTrainedModel,
68
        Trainer,
69
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
70
    )
71
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
72
73


74
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
75
76


Sylvain Gugger's avatar
Sylvain Gugger committed
77
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
78
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
79
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
80
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
85

Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
88
89
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94


95
96
97
98
99
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

100
101
102
103
104
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

105

106
107
108
109
110
111
112
113
114
115
116
117
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
138
139
140
141
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
142

Julien Chaumond's avatar
Julien Chaumond committed
143

144
145
146
147
148
149
class RegressionModelConfig(PretrainedConfig):
    def __init__(self, a=0, b=0, double_output=False, **kwargs):
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
150
        self.hidden_size = 1
151
152


153
154
155
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
156
157
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
158
159

        def __iter__(self):
160
161
            for i in range(len(self.dataset)):
                yield self.dataset[i]
162

163
    class RegressionModel(nn.Module):
164
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
165
            super().__init__()
166
167
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
168
169
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
170

Stas Bekman's avatar
Stas Bekman committed
171
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
            y = input_x * self.a + self.b
            if labels is None:
174
                return (y, y) if self.double_output else (y,)
175
            loss = nn.functional.mse_loss(y, labels)
176
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
177

178
    class RegressionDictModel(nn.Module):
179
180
        def __init__(self, a=0, b=0):
            super().__init__()
181
182
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
183
184
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
185
        def forward(self, input_x, labels=None, **kwargs):
186
187
188
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
189
                result["loss"] = nn.functional.mse_loss(y, labels)
190
191
            return result

192
193
194
195
196
197
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
198
199
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
200
201
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
202
        def forward(self, input_x, labels=None, **kwargs):
203
204
205
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
206
            loss = nn.functional.mse_loss(y, labels)
207
208
            return (loss, y, y) if self.double_output else (loss, y)

209
210
211
212
213
214
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
215
216
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
217
218
219
220
221
222
223
224
225
226
227

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            torch_rand = torch.randn(1).squeeze()
            np_rand = np.random.rand()
            rand_rand = random.random()

            y += 0.05 * torch_rand + 0.05 * torch.tensor(np_rand + rand_rand)

            if labels is None:
                return (y,)
228
            loss = nn.functional.mse_loss(y, labels)
229
230
            return (loss, y)

231
    class TstLayer(nn.Module):
232
233
        def __init__(self, hidden_size):
            super().__init__()
234
235
236
237
238
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
239
240

        def forward(self, x):
241
242
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
243
244
            return self.ln2(x + h + self.bias)

245
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
246
247
248
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
249
250
251
252

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
253
        else:
254
255
256
257
258
259
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
260
261
262
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
263
        output_dir = kwargs.pop("output_dir", "./regression")
264
265

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
266
267
268
269
270
271
272
273
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
274
            model_init=model_init,
Sylvain Gugger's avatar
Sylvain Gugger committed
275
276
        )

277

278
class TrainerIntegrationCommon:
279
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
280
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
281
282
283
284
285
286
287
288
289
290
291
292
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
293
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
294
295
296
297
298
299
300
301
302
303
304
305

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
306
            best_model.to(trainer.args.device)
307
308
309
310
311
312
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

313
314
315
316
317
318
319
320
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
321
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
322
        for log, log1 in zip(log_history, log_history1):
323
324
325
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
326
327
            self.assertEqual(log, log1)

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
        config = GPT2Config(vocab_size=100, n_positions=128, n_ctx=128, n_embd=32, n_layer=3, n_head=4)
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

379
380
381
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
382
        args = TrainingArguments("./regression", report_to=[])
383
384
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
385
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
386
            if key != "logging_dir":
387
                self.assertEqual(dict1[key], dict2[key])
388

Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
391
392
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
393
        self.check_trained_model(trainer.model)
Sylvain Gugger's avatar
Sylvain Gugger committed
394
395
396
397

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
398
        self.check_trained_model(trainer.model, alternate_seed=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
417
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
418
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
419
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
420
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
421
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
422
423
424
425
426

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
427
428
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
429
430
431
432
433
434
435
436
437

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
438
439
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
440

441
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
442
        new_eval_dataset = RegressionDataset(length=128)
443
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
444

445
446
447
448
449
450
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
451
452
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
453
454
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
455
        self.assertEqual(trainer.args.n_gpu, 1)
456
457
458
459
460
461
462

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
463
464
465
466
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
467
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
468
469
470
471
472
473
474
475
476
477
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
478
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

497
498
499
500
501
502
503
504
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
505
506
507
508
509
510
511
512
513
514
515
516
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

553
    @require_datasets
554
    def test_trainer_with_datasets(self):
555
556
        import datasets

Sylvain Gugger's avatar
Sylvain Gugger committed
557
558
559
        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
560
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})
Sylvain Gugger's avatar
Sylvain Gugger committed
561
562
563
564
565
566
567
568
569

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
570
        train_dataset.set_format(type="torch", dtype=torch.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
571
572
573
574
575
576
577
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
578
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
Sylvain Gugger's avatar
Sylvain Gugger committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

593
594
595
        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
596
597
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
    @require_torch
    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

Sylvain Gugger's avatar
Sylvain Gugger committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

633
634
635
636
637
638
639
640
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
641
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
642
643
644
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

645
646
647
648
649
650
651
652
    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

653
654
655
656
657
658
659
660
661
662
663
664
665
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

666
667
668
669
670
671
    def test_can_resume_training(self):
        if torch.cuda.device_count() > 2:
            # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
            # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
            # won't be the same since the training dataloader is shuffled).
            return
672

673
        with tempfile.TemporaryDirectory() as tmpdir:
674
675
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer = get_regression_trainer(**kwargs)
676
677
678
679
680
681
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

682
            # Reinitialize trainer
683
            trainer = get_regression_trainer(**kwargs)
684

685
            trainer.train(resume_from_checkpoint=checkpoint)
686
687
688
689
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
690
            self.check_trainer_state_are_the_same(state, state1)
691

692
693
694
695
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
696
            trainer = get_regression_trainer(**kwargs)
697

698
            trainer.train(resume_from_checkpoint=checkpoint)
699
700
701
702
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
703
            self.check_trainer_state_are_the_same(state, state1)
704

705
706
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
707
708
709
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False)

            trainer = get_regression_trainer(**kwargs)
710
711
712
713
714
715
716
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
717
            trainer = get_regression_trainer(**kwargs)
718

719
            trainer.train(resume_from_checkpoint=checkpoint)
720
721
722
723
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
724
            self.check_trainer_state_are_the_same(state, state1)
725

726
727
728
729
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
730
            trainer = get_regression_trainer(**kwargs)
731

732
            trainer.train(resume_from_checkpoint=checkpoint)
733
734
735
736
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
737
            self.check_trainer_state_are_the_same(state, state1)
738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
    def test_resume_training_with_randomness(self):
        if torch.cuda.device_count() >= 2:
            # This test will fail flakily for more than 2 GPUs since the result will be slightly more different.
            return

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train()
        (a, b) = trainer.model.a.item(), trainer.model.b.item()

        model = RegressionRandomPreTrainedModel(config)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
        (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

        self.assertTrue(math.isclose(a, a1, rel_tol=1e-8))
        self.assertTrue(math.isclose(b, b1, rel_tol=1e-8))

782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
    def test_resume_training_with_gradient_accumulation(self):
        if torch.cuda.device_count() > 2:
            # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
            # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
            # won't be the same since the training dataloader is shuffled).
            return
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

803
804
805
806
807
808
809
810
811
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
812

813
            trainer.train(resume_from_checkpoint=checkpoint)
814
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

    def test_resume_training_with_frozen_params(self):
        if torch.cuda.device_count() > 2:
            # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
            # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
            # won't be the same since the training dataloader is shuffled).
            return
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
855
856
857
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
858
            self.check_trainer_state_are_the_same(state, state1)
859

860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        # Save is done every eval regardless of the strategy
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
                load_best_model_at_end=True,
921
                pretrained=False,
922
923
924
925
926
927
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

928
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
929
930
931
932
933
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
934
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
935
        )
936
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
937
938
939
940

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
941
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
942

943
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
944
945
946
947
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
948
949
950
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
951
952
        )
        self.assertEqual(len(dataset), 31)
953

954
    def test_training_iterable_dataset(self):
955
956
957
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
        train_dataset = SampleIterableDataset()
958

959
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
960
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
961
        trainer.train()
962
        self.assertEqual(trainer.state.global_step, 4)
963

964
965
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
966
967
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

968
969
970
971
972
973
974
975
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
976

977
978
979
980
981
982
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
983

984
985
986
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
987

988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        test_dataset = SampleIterableDataset(length=66)
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1027

1028
1029
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1030
1031
1032
1033
1034
1035
1036
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1037
                evaluation_strategy=IntervalStrategy.EPOCH,
1038
1039
1040
1041
1042
1043
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1044
1045

        # Invalid inputs to trainer with early stopping callback result in assertion error
1046
1047
1048
1049
1050
1051
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1052
                evaluation_strategy=IntervalStrategy.EPOCH,
1053
1054
1055
1056
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1057
            self.assertEqual(trainer.state.global_step, 0)
1058
1059
1060
1061
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1062

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1063
1064
1065
1066
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1067
1068
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1069
1070
1071
1072
1073

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1074
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1075

1076
1077
1078
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, load_best_model_at_end=True, save_total_limit=2)
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
            trainer = get_regression_trainer(output_dir=tmp_dir, load_best_model_at_end=True, save_total_limit=1)
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):

        # with mem metrics enabled
1129
        trainer = get_regression_trainer(skip_memory_metrics=False)
1130
1131
1132
1133
1134
1135
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1136
1137
1138
1139
1140
1141
    @require_torch_gpu
    def test_fp16_full_eval(self):

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1142
        n_gpus = get_gpu_count()
1143
1144

        bs = 8
1145
        eval_len = 16 * n_gpus
1146
1147
1148
1149
1150
1151
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. with mem metrics enabled
1152
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

        # 2. with mem metrics disabled
1173
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1194
    def test_no_wd_param_group(self):
1195
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1206

Sylvain Gugger's avatar
Sylvain Gugger committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
1218
            cls._api.delete_repo(token=cls._token, name="test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1219
1220
1221
1222
        except HTTPError:
            pass

        try:
1223
            cls._api.delete_repo(token=cls._token, name="test-trainer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1224
1225
1226
1227
1228
1229
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
1230
            url = trainer.push_to_hub(repo_name="test-trainer", use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
1231
1232
1233
1234
1235
1236

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

1237
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1238
1239
1240
1241
1242
1243
1244
1245
1246

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
1247
1248
1249
            url = trainer.push_to_hub(
                repo_name="test-trainer-org", organization="valid_org", use_auth_token=self._token
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
1250
1251
1252
1253
1254

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
1255
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1256

1257
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1258
1259
1260
1261
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())


1262
1263
@require_torch
@require_optuna
1264
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

1291
1292
1293
1294
1295
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1296
                evaluation_strategy=IntervalStrategy.EPOCH,
1297
1298
1299
1300
1301
1302
1303
1304
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

1315
    def ray_hyperparameter_search(self):
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
1328
1329
1330
1331
1332
1333
1334
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1346
                evaluation_strategy=IntervalStrategy.EPOCH,
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()