test_trainer.py 13.5 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
import unittest

3
import datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
4
5
import numpy as np

Julien Chaumond's avatar
Julien Chaumond committed
6
from transformers import AutoTokenizer, TrainingArguments, is_torch_available
7
from transformers.testing_utils import get_tests_dir, require_torch
Julien Chaumond's avatar
Julien Chaumond committed
8
9
10
11


if is_torch_available():
    import torch
12
13
    from torch.utils.data import IterableDataset

Julien Chaumond's avatar
Julien Chaumond committed
14
15
16
17
    from transformers import (
        AutoModelForSequenceClassification,
        GlueDataset,
        GlueDataTrainingArguments,
18
19
        LineByLineTextDataset,
        Trainer,
Julien Chaumond's avatar
Julien Chaumond committed
20
21
22
    )


23
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
24
25


Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
class RegressionDataset:
    def __init__(self, a=2, b=3, length=64, seed=42):
        np.random.seed(seed)
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
        self.y = a * self.x + b + np.random.normal(scale=0.1, size=(length,))
Julien Chaumond's avatar
Julien Chaumond committed
32

Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.x[i], "label": self.y[i]}


class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
48

Julien Chaumond's avatar
Julien Chaumond committed
49

50
51
52
53
54
55
56
57
58
59
60
61
62
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
        def __init__(self, file_path):
            self.file_path = file_path

        def parse_file(self):
            f = open(self.file_path, "r")
            return f.readlines()

        def __iter__(self):
            return iter(self.parse_file())

Sylvain Gugger's avatar
Sylvain Gugger committed
63
    class RegressionModel(torch.nn.Module):
64
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
65
66
67
            super().__init__()
            self.a = torch.nn.Parameter(torch.tensor(a).float())
            self.b = torch.nn.Parameter(torch.tensor(b).float())
68
69
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73

        def forward(self, input_x=None, labels=None):
            y = input_x * self.a + self.b
            if labels is None:
74
                return (y, y) if self.double_output else (y,)
Sylvain Gugger's avatar
Sylvain Gugger committed
75
            loss = torch.nn.functional.mse_loss(y, labels)
76
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
77

78
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
79
80
        train_dataset = RegressionDataset(length=train_len)
        eval_dataset = RegressionDataset(length=eval_len)
81
        model = RegressionModel(a, b, double_output)
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
        args = TrainingArguments("./regression", **kwargs)
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
        )

96

Julien Chaumond's avatar
Julien Chaumond committed
97
98
@require_torch
class TrainerIntegrationTest(unittest.TestCase):
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
116
117
118
119
120

    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
121
        self.check_trained_model(trainer.model)
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        self.check_trained_model(trainer.model, alternate_seed=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

    def test_train_and_eval_dataloaders(self):
145
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
146
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
147
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
148
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
149
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
150
151
152
153
154

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
155
156
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
157
158
159
160
161
162
163
164
165

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
166
167
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
168

169
        # Check passing a new dataset for evaluation wors
Sylvain Gugger's avatar
Sylvain Gugger committed
170
        new_eval_dataset = RegressionDataset(length=128)
171
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.y
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

207
208
209
210
211
212
213
214
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

215
    def test_trainer_with_datasets(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
216
217
218
        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
219
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})
Sylvain Gugger's avatar
Sylvain Gugger committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch")
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
237
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
Sylvain Gugger's avatar
Sylvain Gugger committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

252
253
254
        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
Sylvain Gugger's avatar
Sylvain Gugger committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

Julien Chaumond's avatar
Julien Chaumond committed
273
274
275
276
277
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
278
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
279
        )
280
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
281
282
283
284

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
285
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
286
287
288
289
290

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
291
292
293
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
294
295
        )
        self.assertEqual(len(dataset), 31)
296
297
298
299
300
301
302
303
304

    def test_trainer_iterable_dataset(self):
        MODEL_ID = "sshleifer/tiny-distilbert-base-cased"
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        train_dataset = SampleIterableDataset(PATH_SAMPLE_TEXT)
        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, train_dataset=train_dataset)
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))