test_trainer.py 8.17 KB
Newer Older
Julien Chaumond's avatar
Julien Chaumond committed
1
2
3
import unittest

from transformers import AutoTokenizer, TrainingArguments, is_torch_available
4
from transformers.testing_utils import require_torch
Julien Chaumond's avatar
Julien Chaumond committed
5
6
7
8
9
10
11
12


if is_torch_available():
    import torch
    from transformers import (
        Trainer,
        LineByLineTextDataset,
        AutoModelForSequenceClassification,
13
        default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
14
        DataCollatorForLanguageModeling,
15
        DataCollatorForPermutationLanguageModeling,
Julien Chaumond's avatar
Julien Chaumond committed
16
17
18
19
20
21
22
23
24
25
26
        GlueDataset,
        GlueDataTrainingArguments,
        TextDataset,
    )


PATH_SAMPLE_TEXT = "./tests/fixtures/sample_text.txt"


@require_torch
class DataCollatorIntegrationTest(unittest.TestCase):
27
    def test_default_with_dict(self):
Sylvain Gugger's avatar
Sylvain Gugger committed
28
        features = [{"label": i, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
29
30
31
32
33
34
35
36
37
38
39
40
41
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": [0, 1, 2], "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor([[0, 1, 2]] * 8)))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # Features can already be tensors
Sylvain Gugger's avatar
Sylvain Gugger committed
42
        features = [{"label": i, "inputs": torch.randint(10, [10])} for i in range(8)]
43
44
45
46
47
        batch = default_data_collator(features)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

48
49
50
51
52
53
54
55
        # Labels can already be tensors
        features = [{"label": torch.tensor(i), "inputs": torch.randint(10, [10])} for i in range(8)]
        batch = default_data_collator(features)
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertTrue(batch["labels"].equal(torch.tensor(list(range(8)))))
        self.assertEqual(batch["labels"].dtype, torch.long)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 10]))

Sylvain Gugger's avatar
Sylvain Gugger committed
56
57
58
59
60
61
62
63
64
65
66
67
    def test_default_with_no_labels(self):
        features = [{"label": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

        # With label_ids
        features = [{"label_ids": None, "inputs": [0, 1, 2, 3, 4, 5]} for i in range(8)]
        batch = default_data_collator(features)
        self.assertTrue("labels" not in batch)
        self.assertEqual(batch["inputs"].shape, torch.Size([8, 6]))

Julien Chaumond's avatar
Julien Chaumond committed
68
69
70
71
    def test_default_classification(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
72
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
73
        )
74
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
75
76
        data_collator = default_data_collator
        batch = data_collator(dataset.features)
Julien Chaumond's avatar
Julien Chaumond committed
77
78
79
80
81
82
        self.assertEqual(batch["labels"].dtype, torch.long)

    def test_default_regression(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
83
            task_name="sts-b", data_dir="./tests/fixtures/tests_samples/STS-B", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
84
        )
85
        dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
86
87
        data_collator = default_data_collator
        batch = data_collator(dataset.features)
Julien Chaumond's avatar
Julien Chaumond committed
88
89
90
91
92
93
94
95
96
97
98
        self.assertEqual(batch["labels"].dtype, torch.float)

    def test_lm_tokenizer_without_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        data_collator = DataCollatorForLanguageModeling(tokenizer, mlm=False)
        # ^ causal lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        with self.assertRaises(ValueError):
            # Expect error due to padding token missing on gpt2:
99
            data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
100
101
102

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
103
        batch = data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
104
105
106
107
108
109
110
111
112
113
114
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

    def test_lm_tokenizer_with_padding(self):
        tokenizer = AutoTokenizer.from_pretrained("distilroberta-base")
        data_collator = DataCollatorForLanguageModeling(tokenizer)
        # ^ masked lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
115
        batch = data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
116
117
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((31, 107)))
Sylvain Gugger's avatar
Sylvain Gugger committed
118
        self.assertEqual(batch["labels"].shape, torch.Size((31, 107)))
Julien Chaumond's avatar
Julien Chaumond committed
119
120
121

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
122
        batch = data_collator(examples)
Julien Chaumond's avatar
Julien Chaumond committed
123
124
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
Sylvain Gugger's avatar
Sylvain Gugger committed
125
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))
Julien Chaumond's avatar
Julien Chaumond committed
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def test_plm(self):
        tokenizer = AutoTokenizer.from_pretrained("xlnet-base-cased")
        data_collator = DataCollatorForPermutationLanguageModeling(tokenizer)
        # ^ permutation lm

        dataset = LineByLineTextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((31, 112)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((31, 112, 112)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((31, 112, 112)))
        self.assertEqual(batch["labels"].shape, torch.Size((31, 112)))

        dataset = TextDataset(tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=512, overwrite_cache=True)
        examples = [dataset[i] for i in range(len(dataset))]
        batch = data_collator(examples)
        self.assertIsInstance(batch, dict)
        self.assertEqual(batch["input_ids"].shape, torch.Size((2, 512)))
        self.assertEqual(batch["perm_mask"].shape, torch.Size((2, 512, 512)))
        self.assertEqual(batch["target_mapping"].shape, torch.Size((2, 512, 512)))
        self.assertEqual(batch["labels"].shape, torch.Size((2, 512)))

        example = [torch.randint(5, [5])]
        with self.assertRaises(ValueError):
            # Expect error due to odd sequence length
            data_collator(example)

Julien Chaumond's avatar
Julien Chaumond committed
155
156
157
158
159
160
161
162

@require_torch
class TrainerIntegrationTest(unittest.TestCase):
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
163
            task_name="mrpc", data_dir="./tests/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
164
        )
165
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
166
167
168
169

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
170
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
171
172
173
174
175
176
177
178

    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
            tokenizer=tokenizer, file_path=PATH_SAMPLE_TEXT, block_size=tokenizer.max_len_single_sentence,
        )
        self.assertEqual(len(dataset), 31)