test_trainer.py 76.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import dataclasses
17
import gc
18
import math
19
import os
20
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import re
22
import subprocess
23
import tempfile
Julien Chaumond's avatar
Julien Chaumond committed
24
import unittest
25
from pathlib import Path
26
from unittest.mock import Mock, patch
Julien Chaumond's avatar
Julien Chaumond committed
27

Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
import numpy as np

30
from huggingface_hub import Repository, delete_repo, login
31
from parameterized import parameterized
Sylvain Gugger's avatar
Sylvain Gugger committed
32
from requests.exceptions import HTTPError
33
34
35
36
37
38
39
40
from transformers import (
    AutoTokenizer,
    IntervalStrategy,
    PretrainedConfig,
    TrainingArguments,
    is_torch_available,
    logging,
)
41
from transformers.file_utils import WEIGHTS_NAME, is_apex_available
42
from transformers.testing_utils import (
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
    ENDPOINT_STAGING,
    PASS,
    USER,
46
    CaptureLogger,
47
    TestCasePlus,
48
    get_gpu_count,
49
    get_tests_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
50
    is_staging_test,
51
    require_optuna,
52
    require_ray,
53
    require_sentencepiece,
54
    require_sigopt,
55
56
    require_tokenizers,
    require_torch,
57
    require_torch_bf16,
58
    require_torch_gpu,
59
    require_torch_multi_gpu,
60
    require_torch_non_multi_gpu,
61
    require_torch_tf32,
62
    require_torch_up_to_2_gpus,
63
    require_wandb,
64
65
    slow,
)
66
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
67
from transformers.training_args import OptimizerNames
68
from transformers.utils.hp_naming import TrialShortNamer
Julien Chaumond's avatar
Julien Chaumond committed
69
70
71
72


if is_torch_available():
    import torch
73
    from torch import nn
74
75
    from torch.utils.data import IterableDataset

76
    import transformers.optimization
Julien Chaumond's avatar
Julien Chaumond committed
77
78
    from transformers import (
        AutoModelForSequenceClassification,
79
        EarlyStoppingCallback,
Julien Chaumond's avatar
Julien Chaumond committed
80
81
        GlueDataset,
        GlueDataTrainingArguments,
82
83
        GPT2Config,
        GPT2LMHeadModel,
84
        LineByLineTextDataset,
85
        PreTrainedModel,
86
        Trainer,
87
        TrainerState,
Julien Chaumond's avatar
Julien Chaumond committed
88
    )
89
    from transformers.modeling_utils import unwrap_model
Julien Chaumond's avatar
Julien Chaumond committed
90
91


92
PATH_SAMPLE_TEXT = f"{get_tests_dir()}/fixtures/sample_text.txt"
Julien Chaumond's avatar
Julien Chaumond committed
93
94


Sylvain Gugger's avatar
Sylvain Gugger committed
95
class RegressionDataset:
Sylvain Gugger's avatar
Sylvain Gugger committed
96
    def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
Sylvain Gugger's avatar
Sylvain Gugger committed
97
        np.random.seed(seed)
Sylvain Gugger's avatar
Sylvain Gugger committed
98
        self.label_names = ["labels"] if label_names is None else label_names
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
        self.length = length
        self.x = np.random.normal(size=(length,)).astype(np.float32)
Sylvain Gugger's avatar
Sylvain Gugger committed
101
102
        self.ys = [a * self.x + b + np.random.normal(scale=0.1, size=(length,)) for _ in self.label_names]
        self.ys = [y.astype(np.float32) for y in self.ys]
Julien Chaumond's avatar
Julien Chaumond committed
103

Sylvain Gugger's avatar
Sylvain Gugger committed
104
105
106
107
    def __len__(self):
        return self.length

    def __getitem__(self, i):
Sylvain Gugger's avatar
Sylvain Gugger committed
108
109
110
        result = {name: y[i] for name, y in zip(self.label_names, self.ys)}
        result["input_x"] = self.x[i]
        return result
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112


113
114
115
116
117
@dataclasses.dataclass
class RegressionTrainingArguments(TrainingArguments):
    a: float = 0.0
    b: float = 0.0

118
119
120
121
122
    def __post_init__(self):
        super().__post_init__()
        # save resources not dealing with reporting (also avoids the warning when it's not set)
        self.report_to = []

123

124
125
126
127
128
129
130
131
132
133
134
135
class RepeatDataset:
    def __init__(self, x, length=64):
        self.x = x
        self.length = length

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_ids": self.x, "labels": self.x}


136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
class DynamicShapesDataset:
    def __init__(self, length=64, seed=42, batch_size=8):
        self.length = length
        np.random.seed(seed)
        sizes = np.random.randint(1, 20, (length // batch_size,))
        # For easy batching, we make every batch_size consecutive samples the same size.
        self.xs = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]
        self.ys = [np.random.normal(size=(s,)) for s in sizes.repeat(batch_size)]

    def __len__(self):
        return self.length

    def __getitem__(self, i):
        return {"input_x": self.xs[i], "labels": self.ys[i]}


Sylvain Gugger's avatar
Sylvain Gugger committed
152
153
154
155
156
157
158
159
class AlmostAccuracy:
    def __init__(self, thresh=0.25):
        self.thresh = thresh

    def __call__(self, eval_pred):
        predictions, labels = eval_pred
        true = np.abs(predictions - labels) <= self.thresh
        return {"accuracy": true.astype(np.float32).mean().item()}
160

Julien Chaumond's avatar
Julien Chaumond committed
161

162
163
164
165
166
167
class RegressionModelConfig(PretrainedConfig):
    def __init__(self, a=0, b=0, double_output=False, **kwargs):
        super().__init__(**kwargs)
        self.a = a
        self.b = b
        self.double_output = double_output
168
        self.hidden_size = 1
169
170


171
172
173
if is_torch_available():

    class SampleIterableDataset(IterableDataset):
174
175
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            self.dataset = RegressionDataset(a=a, b=b, length=length, seed=seed, label_names=label_names)
176
177

        def __iter__(self):
178
179
            for i in range(len(self.dataset)):
                yield self.dataset[i]
180

181
182
183
184
185
186
187
188
189
190
    class FiniteIterableDataset(SampleIterableDataset):
        def __init__(self, a=2, b=3, length=64, seed=42, label_names=None):
            super().__init__(a, b, length, seed, label_names)
            self.current_sample = 0

        def __iter__(self):
            while self.current_sample < len(self.dataset):
                yield self.dataset[self.current_sample]
                self.current_sample += 1

191
    class RegressionModel(nn.Module):
192
        def __init__(self, a=0, b=0, double_output=False):
Sylvain Gugger's avatar
Sylvain Gugger committed
193
            super().__init__()
194
195
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
196
197
            self.double_output = double_output
            self.config = None
Sylvain Gugger's avatar
Sylvain Gugger committed
198

Stas Bekman's avatar
Stas Bekman committed
199
        def forward(self, input_x, labels=None, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
200
201
            y = input_x * self.a + self.b
            if labels is None:
202
                return (y, y) if self.double_output else (y,)
203
            loss = nn.functional.mse_loss(y, labels)
204
            return (loss, y, y) if self.double_output else (loss, y)
Sylvain Gugger's avatar
Sylvain Gugger committed
205

206
    class RegressionDictModel(nn.Module):
207
208
        def __init__(self, a=0, b=0):
            super().__init__()
209
210
            self.a = nn.Parameter(torch.tensor(a).float())
            self.b = nn.Parameter(torch.tensor(b).float())
211
212
            self.config = None

Stas Bekman's avatar
Stas Bekman committed
213
        def forward(self, input_x, labels=None, **kwargs):
214
215
216
            y = input_x * self.a + self.b
            result = {"output": y}
            if labels is not None:
217
                result["loss"] = nn.functional.mse_loss(y, labels)
218
219
            return result

220
221
222
223
224
225
    class RegressionPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
226
227
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
228
229
            self.double_output = config.double_output

Stas Bekman's avatar
Stas Bekman committed
230
        def forward(self, input_x, labels=None, **kwargs):
231
232
233
            y = input_x * self.a + self.b
            if labels is None:
                return (y, y) if self.double_output else (y,)
234
            loss = nn.functional.mse_loss(y, labels)
235
236
            return (loss, y, y) if self.double_output else (loss, y)

237
238
239
240
241
242
    class RegressionRandomPreTrainedModel(PreTrainedModel):
        config_class = RegressionModelConfig
        base_model_prefix = "regression"

        def __init__(self, config):
            super().__init__(config)
243
244
            self.a = nn.Parameter(torch.tensor(config.a).float())
            self.b = nn.Parameter(torch.tensor(config.b).float())
245
246
247
248
249
250
251
252
253
254
255

        def forward(self, input_x, labels=None, **kwargs):
            y = input_x * self.a + self.b
            torch_rand = torch.randn(1).squeeze()
            np_rand = np.random.rand()
            rand_rand = random.random()

            y += 0.05 * torch_rand + 0.05 * torch.tensor(np_rand + rand_rand)

            if labels is None:
                return (y,)
256
            loss = nn.functional.mse_loss(y, labels)
257
258
            return (loss, y)

259
    class TstLayer(nn.Module):
260
261
        def __init__(self, hidden_size):
            super().__init__()
262
263
264
265
266
            self.linear1 = nn.Linear(hidden_size, hidden_size)
            self.ln1 = nn.LayerNorm(hidden_size)
            self.linear2 = nn.Linear(hidden_size, hidden_size)
            self.ln2 = nn.LayerNorm(hidden_size)
            self.bias = nn.Parameter(torch.zeros(hidden_size))
267
268

        def forward(self, x):
269
270
            h = self.ln1(nn.functional.relu(self.linear1(x)))
            h = nn.functional.relu(self.linear2(x))
271
272
            return self.ln2(x + h + self.bias)

273
    def get_regression_trainer(a=0, b=0, double_output=False, train_len=64, eval_len=64, pretrained=True, **kwargs):
Sylvain Gugger's avatar
Sylvain Gugger committed
274
275
276
        label_names = kwargs.get("label_names", None)
        train_dataset = RegressionDataset(length=train_len, label_names=label_names)
        eval_dataset = RegressionDataset(length=eval_len, label_names=label_names)
277
278
279
280

        model_init = kwargs.pop("model_init", None)
        if model_init is not None:
            model = None
281
        else:
282
283
284
285
286
287
            if pretrained:
                config = RegressionModelConfig(a=a, b=b, double_output=double_output)
                model = RegressionPreTrainedModel(config)
            else:
                model = RegressionModel(a=a, b=b, double_output=double_output)

Sylvain Gugger's avatar
Sylvain Gugger committed
288
289
290
        compute_metrics = kwargs.pop("compute_metrics", None)
        data_collator = kwargs.pop("data_collator", None)
        optimizers = kwargs.pop("optimizers", (None, None))
291
        output_dir = kwargs.pop("output_dir", "./regression")
292
        preprocess_logits_for_metrics = kwargs.pop("preprocess_logits_for_metrics", None)
293
294

        args = RegressionTrainingArguments(output_dir, a=a, b=b, **kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
295
296
297
298
299
300
301
302
        return Trainer(
            model,
            args,
            data_collator=data_collator,
            train_dataset=train_dataset,
            eval_dataset=eval_dataset,
            compute_metrics=compute_metrics,
            optimizers=optimizers,
303
            model_init=model_init,
304
            preprocess_logits_for_metrics=preprocess_logits_for_metrics,
Sylvain Gugger's avatar
Sylvain Gugger committed
305
306
        )

307

308
class TrainerIntegrationCommon:
309
    def check_saved_checkpoints(self, output_dir, freq, total, is_pretrained=True):
310
        file_list = [WEIGHTS_NAME, "training_args.bin", "optimizer.pt", "scheduler.pt", "trainer_state.json"]
311
312
313
314
315
316
317
318
319
320
321
322
        if is_pretrained:
            file_list.append("config.json")
        for step in range(freq, total, freq):
            checkpoint = os.path.join(output_dir, f"checkpoint-{step}")
            self.assertTrue(os.path.isdir(checkpoint))
            for filename in file_list:
                self.assertTrue(os.path.isfile(os.path.join(checkpoint, filename)))

    def check_best_model_has_been_loaded(
        self, output_dir, freq, total, trainer, metric, greater_is_better=False, is_pretrained=True
    ):
        checkpoint = os.path.join(output_dir, f"checkpoint-{(total // freq) * freq}")
323
        log_history = TrainerState.load_from_json(os.path.join(checkpoint, "trainer_state.json")).log_history
324
325
326
327
328
329
330
331
332
333
334
335

        values = [d[metric] for d in log_history]
        best_value = max(values) if greater_is_better else min(values)
        best_checkpoint = (values.index(best_value) + 1) * freq
        checkpoint = os.path.join(output_dir, f"checkpoint-{best_checkpoint}")
        if is_pretrained:
            best_model = RegressionPreTrainedModel.from_pretrained(checkpoint)
            best_model.to(trainer.args.device)
        else:
            best_model = RegressionModel()
            state_dict = torch.load(os.path.join(checkpoint, WEIGHTS_NAME))
            best_model.load_state_dict(state_dict)
336
            best_model.to(trainer.args.device)
337
338
339
340
341
342
        self.assertTrue(torch.allclose(best_model.a, trainer.model.a))
        self.assertTrue(torch.allclose(best_model.b, trainer.model.b))

        metrics = trainer.evaluate()
        self.assertEqual(metrics[metric], best_value)

343
344
345
346
347
348
349
350
    def check_trainer_state_are_the_same(self, trainer_state, trainer_state1):
        # We'll pop things so operate on copies.
        state = trainer_state.copy()
        state1 = trainer_state1.copy()
        # Log history main contain different logs for the time metrics (after resuming a training).
        log_history = state.pop("log_history", None)
        log_history1 = state1.pop("log_history", None)
        self.assertEqual(state, state1)
351
        skip_log_keys = ["train_runtime", "train_samples_per_second", "train_steps_per_second", "train_loss"]
352
        for log, log1 in zip(log_history, log_history1):
353
354
355
            for key in skip_log_keys:
                _ = log.pop(key, None)
                _ = log1.pop(key, None)
356
357
            self.assertEqual(log, log1)

358
359
360
361

@require_torch
@require_sentencepiece
@require_tokenizers
362
363
364
365
366
367
368
369
class TrainerIntegrationPrerunTest(TestCasePlus, TrainerIntegrationCommon):
    """
    Only tests that want to tap into the auto-pre-run 2 trainings:
    - self.default_trained_model
    - self.alternate_trained_model
    directly, or via check_trained_model
    """

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.default_trained_model = (trainer.model.a, trainer.model.b)

        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.alternate_trained_model = (trainer.model.a, trainer.model.b)

    def check_trained_model(self, model, alternate_seed=False):
        # Checks a training seeded with learning_rate = 0.1
        (a, b) = self.alternate_trained_model if alternate_seed else self.default_trained_model
        self.assertTrue(torch.allclose(model.a, a))
        self.assertTrue(torch.allclose(model.b, b))

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    def test_reproducible_training(self):
        # Checks that training worked, model trained and seed made a reproducible training.
        trainer = get_regression_trainer(learning_rate=0.1)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Checks that a different seed gets different (reproducible) results.
        trainer = get_regression_trainer(learning_rate=0.1, seed=314)
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_trainer_with_datasets(self):
        import datasets

        np.random.seed(42)
        x = np.random.normal(size=(64,)).astype(np.float32)
        y = 2.0 * x + 3.0 + np.random.normal(scale=0.1, size=(64,))
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y})

        # Base training. Should have the same results as test_reproducible_training
        model = RegressionModel()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Can return tensors.
        train_dataset.set_format(type="torch", dtype=torch.float32)
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

        # Adding one column not used by the model should have no impact
        z = np.random.normal(size=(64,)).astype(np.float32)
        train_dataset = datasets.Dataset.from_dict({"input_x": x, "label": y, "extra": z})
        model = RegressionModel()
        trainer = Trainer(model, args, train_dataset=train_dataset)
        trainer.train()
        self.check_trained_model(trainer.model)

    def test_model_init(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression", learning_rate=0.1)
        trainer = Trainer(args=args, train_dataset=train_dataset, model_init=lambda: RegressionModel())
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results.
        trainer.train()
        self.check_trained_model(trainer.model)

        # Re-training should restart from scratch, thus lead the same results and new seed should be used.
        trainer.args.seed = 314
        trainer.train()
        self.check_trained_model(trainer.model, alternate_seed=True)

    def test_gradient_accumulation(self):
        # Training with half the batch size but accumulation steps as 2 should give the same results.
        trainer = get_regression_trainer(
            gradient_accumulation_steps=2, per_device_train_batch_size=4, learning_rate=0.1
        )
        trainer.train()
        self.check_trained_model(trainer.model)

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def test_training_loss(self):
        n_gpus = max(1, get_gpu_count())

        # With even logs
        trainer = get_regression_trainer(logging_steps=64 / (8 * n_gpus))
        trainer.train()
        log_history = trainer.state.log_history

        losses = [log["loss"] for log in log_history if "loss" in log]
        train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(sum(losses) / len(losses), train_loss, places=4)

        # With uneven logs
        trainer = get_regression_trainer(logging_steps=5)
        trainer.train()
        log_history = trainer.state.log_history

        # Training loss should be the same as before
        new_train_loss = log_history[-1]["train_loss"]
        self.assertAlmostEqual(train_loss, new_train_loss, places=4)

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    def test_custom_optimizer(self):
        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 1.0)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertEqual(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 1.0)

    def test_adafactor_lr_none(self):
        # test the special case where lr=None, since Trainer can't not have lr_scheduler

        from transformers.optimization import Adafactor, AdafactorSchedule

        train_dataset = RegressionDataset()
        args = TrainingArguments("./regression")
        model = RegressionModel()
        optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
        lr_scheduler = AdafactorSchedule(optimizer)
        trainer = Trainer(model, args, train_dataset=train_dataset, optimizers=(optimizer, lr_scheduler))
        trainer.train()

        (a, b) = self.default_trained_model
        self.assertFalse(torch.allclose(trainer.model.a, a))
        self.assertFalse(torch.allclose(trainer.model.b, b))
        self.assertGreater(trainer.optimizer.state_dict()["param_groups"][0]["lr"], 0)

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    @require_torch_gpu
    @require_torch_bf16
    def test_mixed_bf16(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, bf16=True)
        trainer.train()
        self.check_trained_model(trainer.model)

        # --bf16 --half_precision_backend apex can't be used together
        with self.assertRaises(ValueError):
            trainer = get_regression_trainer(learning_rate=0.1, bf16=True, half_precision_backend="apex")

        # will add more specific tests once there are some bugs to fix

522
523
524
525
526
527
528
529
530
    @require_torch_gpu
    @require_torch_tf32
    def test_tf32(self):

        # very basic test
        trainer = get_regression_trainer(learning_rate=0.1, tf32=True)
        trainer.train()
        self.check_trained_model(trainer.model)

531
532
533
534
535
536
537
538
539
540
541

@require_torch
@require_sentencepiece
@require_tokenizers
class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
    def setUp(self):
        super().setUp()
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

542
543
544
545
546
547
548
549
550
551
552
553
554
    def test_trainer_works_with_dict(self):
        # Edge case because Apex with mode O2 will change our models to return dicts. This test checks it doesn't break
        # anything.
        train_dataset = RegressionDataset()
        eval_dataset = RegressionDataset()
        model = RegressionDictModel()
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train()
        _ = trainer.evaluate()
        _ = trainer.predict(eval_dataset)

    def test_evaluation_with_keys_to_drop(self):
555
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
556
557
558
559
560
561
562
563
564
565
566
567
568
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        eval_dataset = RepeatDataset(x)
        args = TrainingArguments("./test")
        trainer = Trainer(tiny_gpt2, args, eval_dataset=eval_dataset)
        # By default the past_key_values are removed
        result = trainer.predict(eval_dataset)
        self.assertTrue(isinstance(result.predictions, np.ndarray))
        # We can still get them by setting ignore_keys to []
        result = trainer.predict(eval_dataset, ignore_keys=[])
        self.assertTrue(isinstance(result.predictions, tuple))
        self.assertEqual(len(result.predictions), 2)

569
570
571
    def test_training_arguments_are_left_untouched(self):
        trainer = get_regression_trainer()
        trainer.train()
572
        args = TrainingArguments("./regression", report_to=[])
573
574
        dict1, dict2 = args.to_dict(), trainer.args.to_dict()
        for key in dict1.keys():
575
            # Logging dir can be slightly different as they default to something with the time.
Sylvain Gugger's avatar
Sylvain Gugger committed
576
            if key != "logging_dir":
577
                self.assertEqual(dict1[key], dict2[key])
578

Sylvain Gugger's avatar
Sylvain Gugger committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
    def test_number_of_steps_in_training(self):
        # Regular training has n_epochs * len(train_dl) steps
        trainer = get_regression_trainer(learning_rate=0.1)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, self.n_epochs * 64 / self.batch_size)

        # Check passing num_train_epochs works (and a float version too):
        trainer = get_regression_trainer(learning_rate=0.1, num_train_epochs=1.5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(1.5 * 64 / self.batch_size))

        # If we pass a max_steps, num_train_epochs is ignored
        trainer = get_regression_trainer(learning_rate=0.1, max_steps=10)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 10)

595
    def test_logging_inf_nan_filter(self):
596
        config = GPT2Config(vocab_size=100, n_positions=128, n_embd=32, n_layer=3, n_head=4)
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
        tiny_gpt2 = GPT2LMHeadModel(config)
        x = torch.randint(0, 100, (128,))
        train_dataset = RepeatDataset(x)

        # Trainer without inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=False)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_no_filter = trainer.state.log_history

        # Trainer with inf/nan filter
        args = TrainingArguments("./test", learning_rate=1e9, logging_steps=5, logging_nan_inf_filter=True)
        trainer = Trainer(tiny_gpt2, args, train_dataset=train_dataset)
        trainer.train()
        log_history_filter = trainer.state.log_history

        def is_any_loss_nan_or_inf(log_history):
            losses = [l["loss"] for l in log_history[:-1]]
            return any(math.isnan(x) for x in losses) or any(math.isinf(x) for x in losses)

        self.assertTrue(is_any_loss_nan_or_inf(log_history_no_filter))
        self.assertFalse(is_any_loss_nan_or_inf(log_history_filter))

Sylvain Gugger's avatar
Sylvain Gugger committed
620
    def test_train_and_eval_dataloaders(self):
621
        n_gpu = max(1, torch.cuda.device_count())
Sylvain Gugger's avatar
Sylvain Gugger committed
622
        trainer = get_regression_trainer(learning_rate=0.1, per_device_train_batch_size=16)
623
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
624
        trainer = get_regression_trainer(learning_rate=0.1, per_device_eval_batch_size=16)
625
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16 * n_gpu)
Sylvain Gugger's avatar
Sylvain Gugger committed
626
627
628
629
630

        # Check drop_last works
        trainer = get_regression_trainer(
            train_len=66, eval_len=74, learning_rate=0.1, per_device_train_batch_size=16, per_device_eval_batch_size=32
        )
631
632
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu) + 1)
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu) + 1)
Sylvain Gugger's avatar
Sylvain Gugger committed
633
634
635
636
637
638
639
640
641

        trainer = get_regression_trainer(
            train_len=66,
            eval_len=74,
            learning_rate=0.1,
            per_device_train_batch_size=16,
            per_device_eval_batch_size=32,
            dataloader_drop_last=True,
        )
642
643
        self.assertEqual(len(trainer.get_train_dataloader()), 66 // (16 * n_gpu))
        self.assertEqual(len(trainer.get_eval_dataloader()), 74 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
644

645
        # Check passing a new dataset for evaluation works
Sylvain Gugger's avatar
Sylvain Gugger committed
646
        new_eval_dataset = RegressionDataset(length=128)
647
        self.assertEqual(len(trainer.get_eval_dataloader(new_eval_dataset)), 128 // (32 * n_gpu))
Sylvain Gugger's avatar
Sylvain Gugger committed
648

649
650
651
652
653
654
    @require_torch_multi_gpu
    def test_data_is_not_parallelized_when_model_is_parallel(self):
        model = RegressionModel()
        # Make the Trainer believe it's a parallelized model
        model.is_parallelizable = True
        model.model_parallel = True
655
656
        args = TrainingArguments("./regression", per_device_train_batch_size=16, per_device_eval_batch_size=16)
        trainer = Trainer(model, args, train_dataset=RegressionDataset(), eval_dataset=RegressionDataset())
657
658
        # Check the Trainer was fooled
        self.assertTrue(trainer.is_model_parallel)
659
        self.assertEqual(trainer.args.n_gpu, 1)
660
661
662
663
664
665
666

        # The batch size of the training and evaluation dataloaders should be 16, not 16 * n_gpu
        self.assertEqual(trainer.get_train_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_train_dataloader()), 64 // 16)
        self.assertEqual(trainer.get_eval_dataloader().batch_size, 16)
        self.assertEqual(len(trainer.get_eval_dataloader()), 64 // 16)

Sylvain Gugger's avatar
Sylvain Gugger committed
667
668
669
670
    def test_evaluate(self):
        trainer = get_regression_trainer(a=1.5, b=2.5, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
671
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
672
673
674
675
676
677
678
679
680
681
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()

Sylvain Gugger's avatar
Sylvain Gugger committed
682
        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
Sylvain Gugger's avatar
Sylvain Gugger committed
683
684
685
686
687
688
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        # With logits preprocess
        trainer = get_regression_trainer(
            a=1.5,
            b=2.5,
            compute_metrics=AlmostAccuracy(),
            preprocess_logits_for_metrics=lambda logits, labels: logits + 1,
        )
        results = trainer.evaluate()

        x, y = trainer.eval_dataset.x, trainer.eval_dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred + 1, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

Sylvain Gugger's avatar
Sylvain Gugger committed
705
706
707
708
709
710
711
712
713
714
715
716
    def test_predict(self):
        trainer = get_regression_trainer(a=1.5, b=2.5)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        trainer = get_regression_trainer(a=1.5, b=2.5, eval_len=66)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

717
718
719
720
721
722
723
724
        # With more than one output of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True)
        preds = trainer.predict(trainer.eval_dataset).predictions
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))

Sylvain Gugger's avatar
Sylvain Gugger committed
725
726
727
728
729
730
731
732
733
734
735
736
        # With more than one output/label of the model
        trainer = get_regression_trainer(a=1.5, b=2.5, double_output=True, label_names=["labels", "labels_2"])
        outputs = trainer.predict(trainer.eval_dataset)
        preds = outputs.predictions
        labels = outputs.label_ids
        x = trainer.eval_dataset.x
        self.assertTrue(len(preds), 2)
        self.assertTrue(np.allclose(preds[0], 1.5 * x + 2.5))
        self.assertTrue(np.allclose(preds[1], 1.5 * x + 2.5))
        self.assertTrue(np.array_equal(labels[0], trainer.eval_dataset.ys[0]))
        self.assertTrue(np.array_equal(labels[1], trainer.eval_dataset.ys[1]))

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
    def test_dynamic_shapes(self):
        eval_dataset = DynamicShapesDataset(batch_size=self.batch_size)
        model = RegressionModel(a=2, b=1)
        args = TrainingArguments("./regression")
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        # Same tests with eval accumulation
        args = TrainingArguments("./regression", eval_accumulation_steps=2)
        trainer = Trainer(model, args, eval_dataset=eval_dataset)

        # Check evaluation can run to completion
        _ = trainer.evaluate()

        # Check predictions
        preds = trainer.predict(eval_dataset)
        for expected, seen in zip(eval_dataset.ys, preds.label_ids):
            self.assertTrue(np.array_equal(expected, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

        for expected, seen in zip(eval_dataset.xs, preds.predictions):
            self.assertTrue(np.array_equal(2 * expected + 1, seen[: expected.shape[0]]))
            self.assertTrue(np.all(seen[expected.shape[0] :] == -100))

773
    def test_log_level(self):
774
        # testing only --log_level (--log_level_replica requires multiple gpus and DDP and is tested elsewhere)
775
776
777
        logger = logging.get_logger()
        log_info_string = "Running training"

778
        # test with the default log_level - should be info and thus log on the main process
779
780
781
782
783
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer()
            trainer.train()
        self.assertIn(log_info_string, cl.out)

784
        # test with low log_level - lower than info
785
786
787
788
789
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="debug")
            trainer.train()
        self.assertIn(log_info_string, cl.out)

790
        # test with high log_level - should be quiet
791
792
793
794
795
        with CaptureLogger(logger) as cl:
            trainer = get_regression_trainer(log_level="error")
            trainer.train()
        self.assertNotIn(log_info_string, cl.out)

796
797
798
799
800
801
802
803
    def test_save_checkpoints(self):
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size))

        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
804
            trainer = get_regression_trainer(output_dir=tmpdir, save_steps=5, pretrained=False)
805
806
807
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, int(self.n_epochs * 64 / self.batch_size), False)

808
809
810
811
812
813
814
815
816
817
818
819
820
    @require_torch_multi_gpu
    def test_run_seq2seq_double_train_wrap_once(self):
        # test that we don't wrap the model more than once
        # since wrapping primarily happens on multi-gpu setup we want multiple gpus to test for
        # example DataParallel(DataParallel(model))

        trainer = get_regression_trainer()
        trainer.train()
        model_wrapped_before = trainer.model_wrapped
        trainer.train()
        model_wrapped_after = trainer.model_wrapped
        self.assertIs(model_wrapped_before, model_wrapped_after, "should be not wrapped twice")

821
    @require_torch_up_to_2_gpus
822
    def test_can_resume_training(self):
823
824
825
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).
826

827
        with tempfile.TemporaryDirectory() as tmpdir:
828
829
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1)
            trainer = get_regression_trainer(**kwargs)
830
831
832
833
834
835
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

836
            # Reinitialize trainer
837
            trainer = get_regression_trainer(**kwargs)
838

839
            trainer.train(resume_from_checkpoint=checkpoint)
840
841
842
843
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
844
            self.check_trainer_state_are_the_same(state, state1)
845

846
847
848
849
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
850
            trainer = get_regression_trainer(**kwargs)
851

852
            trainer.train(resume_from_checkpoint=checkpoint)
853
854
855
856
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
857
            self.check_trainer_state_are_the_same(state, state1)
858

859
860
        # With a regular model that is not a PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
861
862
863
            kwargs = dict(output_dir=tmpdir, train_len=128, save_steps=5, learning_rate=0.1, pretrained=False)

            trainer = get_regression_trainer(**kwargs)
864
865
866
867
868
869
870
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer and load model
871
            trainer = get_regression_trainer(**kwargs)
872

873
            trainer.train(resume_from_checkpoint=checkpoint)
874
875
876
877
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
878
            self.check_trainer_state_are_the_same(state, state1)
879

880
881
882
883
            # Now check with a later checkpoint that it also works when we span over one epoch
            checkpoint = os.path.join(tmpdir, "checkpoint-15")

            # Reinitialize trainer and load model
884
            trainer = get_regression_trainer(**kwargs)
885

886
            trainer.train(resume_from_checkpoint=checkpoint)
887
888
889
890
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
891
            self.check_trainer_state_are_the_same(state, state1)
892

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
        # Now check failures

        # 1. fail to find a bogus checkpoint
        trainer = get_regression_trainer()
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=f"{checkpoint}-bogus")
        self.assertTrue("Can't find a valid checkpoint at" in str(context.exception))

        # 2. fail to find any checkpoint - due a fresh output_dir
        output_dir2 = self.get_auto_remove_tmp_dir()
        trainer = get_regression_trainer(output_dir=output_dir2)
        with self.assertRaises(Exception) as context:
            trainer.train(resume_from_checkpoint=True)
        self.assertTrue("No valid checkpoint found in output directory" in str(context.exception))

908
    @require_torch_non_multi_gpu
909
    def test_resume_training_with_randomness(self):
910
911
        # This test will fail flakily for more than 1 GPUs since the result will be slightly more different
        # TODO: investigate why it fails for 2 GPUs?
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

        if torch.cuda.is_available():
            torch.backends.cudnn.deterministic = True
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train()
        (a, b) = trainer.model.a.item(), trainer.model.b.item()

        model = RegressionRandomPreTrainedModel(config)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)
        trainer.train(resume_from_checkpoint=os.path.join(tmp_dir, "checkpoint-15"))
        (a1, b1) = trainer.model.a.item(), trainer.model.b.item()

933
934
        self.assertAlmostEqual(a, a1, delta=1e-8)
        self.assertAlmostEqual(b, b1, delta=1e-8)
935

936
    # regression for this issue: https://github.com/huggingface/transformers/issues/12970
937
    def test_training_with_resume_from_checkpoint_false(self):
938
939
940
941
942
943
944
945
946
947
948
949
        train_dataset = RegressionDataset(length=128)
        eval_dataset = RegressionDataset()

        config = RegressionModelConfig(a=0, b=2)
        model = RegressionRandomPreTrainedModel(config)

        tmp_dir = self.get_auto_remove_tmp_dir()
        args = RegressionTrainingArguments(tmp_dir, save_steps=5, learning_rate=0.1)
        trainer = Trainer(model, args, train_dataset=train_dataset, eval_dataset=eval_dataset)

        trainer.train(resume_from_checkpoint=False)

950
    @require_torch_up_to_2_gpus
951
    def test_resume_training_with_gradient_accumulation(self):
952
953
954
955
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

971
972
973
974
975
976
977
978
979
            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                gradient_accumulation_steps=2,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
980

981
            trainer.train(resume_from_checkpoint=checkpoint)
982
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
983
984
985
986
987
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
            self.check_trainer_state_are_the_same(state, state1)

988
    @require_torch_up_to_2_gpus
989
    def test_resume_training_with_frozen_params(self):
990
991
992
993
        # This test will fail for more than 2 GPUs since the batch size will get bigger and with the number of
        # save_steps, the checkpoint will resume training at epoch 2 or more (so the data seen by the model
        # won't be the same since the training dataloader is shuffled).

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)
            trainer.train()
            (a, b) = trainer.model.a.item(), trainer.model.b.item()
            state = dataclasses.asdict(trainer.state)

            checkpoint = os.path.join(tmpdir, "checkpoint-5")

            # Reinitialize trainer
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                train_len=128,
                per_device_train_batch_size=4,
                save_steps=5,
                learning_rate=0.1,
            )
            trainer.model.a.requires_grad_(False)

            trainer.train(resume_from_checkpoint=checkpoint)

            self.assertFalse(trainer.model.a.requires_grad)
            (a1, b1) = trainer.model.a.item(), trainer.model.b.item()
1023
1024
1025
            state1 = dataclasses.asdict(trainer.state)
            self.assertEqual(a, a1)
            self.assertEqual(b, b1)
1026
            self.check_trainer_state_are_the_same(state, state1)
1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    def test_load_best_model_at_end(self):
        total = int(self.n_epochs * 64 / self.batch_size)
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1038
                save_steps=5,
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
                load_best_model_at_end=True,
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss")

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1054
                save_steps=5,
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_accuracy", greater_is_better=True)

        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                a=1.5,
                b=2.5,
                output_dir=tmpdir,
                learning_rate=0.1,
                evaluation_strategy="epoch",
1071
                save_strategy="epoch",
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
                load_best_model_at_end=True,
                metric_for_best_model="accuracy",
                compute_metrics=AlmostAccuracy(),
            )
            self.assertTrue(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 64 // self.batch_size, total)
            self.check_best_model_has_been_loaded(
                tmpdir, 64 // self.batch_size, total, trainer, "eval_accuracy", greater_is_better=True
            )

        # Test this works with a non PreTrainedModel
        with tempfile.TemporaryDirectory() as tmpdir:
            trainer = get_regression_trainer(
                output_dir=tmpdir,
                learning_rate=0.1,
                eval_steps=5,
                evaluation_strategy="steps",
1090
                save_steps=5,
1091
                load_best_model_at_end=True,
1092
                pretrained=False,
1093
1094
1095
1096
1097
1098
            )
            self.assertFalse(trainer.args.greater_is_better)
            trainer.train()
            self.check_saved_checkpoints(tmpdir, 5, total, is_pretrained=False)
            self.check_best_model_has_been_loaded(tmpdir, 5, total, trainer, "eval_loss", is_pretrained=False)

1099
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1100
1101
1102
1103
1104
    def test_trainer_eval_mrpc(self):
        MODEL_ID = "bert-base-cased-finetuned-mrpc"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        model = AutoModelForSequenceClassification.from_pretrained(MODEL_ID)
        data_args = GlueDataTrainingArguments(
1105
            task_name="mrpc", data_dir=f"{get_tests_dir()}/fixtures/tests_samples/MRPC", overwrite_cache=True
Julien Chaumond's avatar
Julien Chaumond committed
1106
        )
1107
        eval_dataset = GlueDataset(data_args, tokenizer=tokenizer, mode="dev")
Julien Chaumond's avatar
Julien Chaumond committed
1108
1109
1110
1111

        training_args = TrainingArguments(output_dir="./examples", no_cuda=True)
        trainer = Trainer(model=model, args=training_args, eval_dataset=eval_dataset)
        result = trainer.evaluate()
1112
        self.assertLess(result["eval_loss"], 0.2)
Julien Chaumond's avatar
Julien Chaumond committed
1113

1114
    @slow
Julien Chaumond's avatar
Julien Chaumond committed
1115
1116
1117
1118
    def test_trainer_eval_lm(self):
        MODEL_ID = "distilroberta-base"
        tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
        dataset = LineByLineTextDataset(
Lysandre's avatar
Lysandre committed
1119
1120
1121
            tokenizer=tokenizer,
            file_path=PATH_SAMPLE_TEXT,
            block_size=tokenizer.max_len_single_sentence,
Julien Chaumond's avatar
Julien Chaumond committed
1122
1123
        )
        self.assertEqual(len(dataset), 31)
1124

1125
    def test_training_iterable_dataset(self):
1126
1127
1128
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)
        train_dataset = SampleIterableDataset()
1129

1130
        args = RegressionTrainingArguments(output_dir="./examples", max_steps=4)
1131
        trainer = Trainer(model=model, args=args, train_dataset=train_dataset)
1132
        trainer.train()
1133
        self.assertEqual(trainer.state.global_step, 4)
1134

1135
1136
        loader = trainer.get_train_dataloader()
        self.assertIsInstance(loader, torch.utils.data.DataLoader)
1137
1138
        self.assertIsInstance(loader.sampler, torch.utils.data.dataloader._InfiniteConstantSampler)

1139
1140
1141
1142
1143
1144
1145
    def test_training_finite_iterable_dataset(self):
        config = RegressionModelConfig()
        model = RegressionPreTrainedModel(config)

        batch_size = 1
        num_samples = 10

1146
        available_steps = num_samples // batch_size
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158

        data = FiniteIterableDataset(length=num_samples)
        train_args = TrainingArguments(
            ".",
            max_steps=available_steps + 1,  # set a higher number than actually available
            per_device_train_batch_size=batch_size,
        )
        trainer = Trainer(model, train_dataset=data, args=train_args)
        with self.assertLogs("transformers.trainer", level="WARNING") as logs:
            trainer.train()
        self.assertIn(f"stopping training at step {available_steps}!", logs.output[0])

1159
1160
1161
1162
1163
1164
1165
1166
    def test_evaluation_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())
        results = trainer.evaluate()
1167

1168
1169
1170
1171
1172
1173
        x, y = trainer.eval_dataset.dataset.x, trainer.eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)
1174

1175
1176
1177
        # With a number of elements not a round multiple of the batch size
        eval_dataset = SampleIterableDataset(length=66)
        results = trainer.evaluate(eval_dataset)
1178

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
        x, y = eval_dataset.dataset.x, eval_dataset.dataset.ys[0]
        pred = 1.5 * x + 2.5
        expected_loss = ((pred - y) ** 2).mean()
        self.assertAlmostEqual(results["eval_loss"], expected_loss)
        expected_acc = AlmostAccuracy()((pred, y))["accuracy"]
        self.assertAlmostEqual(results["eval_accuracy"], expected_acc)

    def test_predict_iterable_dataset(self):
        config = RegressionModelConfig(a=1.5, b=2.5)
        model = RegressionPreTrainedModel(config)
        eval_dataset = SampleIterableDataset()

        args = RegressionTrainingArguments(output_dir="./examples")
        trainer = Trainer(model=model, args=args, eval_dataset=eval_dataset, compute_metrics=AlmostAccuracy())

        preds = trainer.predict(trainer.eval_dataset).predictions
        x = eval_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))

        # With a number of elements not a round multiple of the batch size
        test_dataset = SampleIterableDataset(length=66)
        preds = trainer.predict(test_dataset).predictions
        x = test_dataset.dataset.x
        self.assertTrue(np.allclose(preds, 1.5 * x + 2.5))
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

    def test_num_train_epochs_in_training(self):
        # len(train_dl) < gradient_accumulation_steps shouldn't give ``ZeroDivisionError`` when ``max_steps`` is given.
        # It should give 1 update step for each epoch.
        trainer = get_regression_trainer(
            max_steps=3, train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5
        )
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, 3)

        # Even ``max_steps`` is not specified, we still expect 1 update step for each epoch if
        # len(train_dl) < gradient_accumulation_steps.
        trainer = get_regression_trainer(train_len=64, per_device_train_batch_size=16, gradient_accumulation_steps=5)
        train_output = trainer.train()
        self.assertEqual(train_output.global_step, int(self.n_epochs))
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1218

1219
1220
    def test_early_stopping_callback(self):
        # early stopping stops training before num_training_epochs
1221
1222
1223
1224
1225
1226
1227
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
                load_best_model_at_end=True,
1228
                evaluation_strategy=IntervalStrategy.EPOCH,
1229
                save_strategy=IntervalStrategy.EPOCH,
1230
1231
1232
1233
1234
1235
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1, 0.0001))
            train_output = trainer.train()
            self.assertLess(train_output.global_step, 20 * 64 / 16)
1236
1237

        # Invalid inputs to trainer with early stopping callback result in assertion error
1238
1239
1240
1241
1242
1243
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                num_train_epochs=20,
                gradient_accumulation_steps=1,
                per_device_train_batch_size=16,
1244
                evaluation_strategy=IntervalStrategy.EPOCH,
1245
1246
1247
1248
                compute_metrics=AlmostAccuracy(),
                metric_for_best_model="accuracy",
            )
            trainer.add_callback(EarlyStoppingCallback(1))
1249
            self.assertEqual(trainer.state.global_step, 0)
1250
1251
1252
1253
            try:
                trainer.train()
            except AssertionError:
                self.assertEqual(trainer.state.global_step, 0)
1254

Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1255
1256
1257
1258
    def test_flos_extraction(self):
        trainer = get_regression_trainer(learning_rate=0.1)

        def assert_flos_extraction(trainer, wrapped_model_to_check):
1259
1260
            self.assertEqual(trainer.model, unwrap_model(wrapped_model_to_check))
            self.assertGreaterEqual(getattr(unwrap_model(wrapped_model_to_check).config, "total_flos", 0), 0)
Marcin Zab艂ocki's avatar
Marcin Zab艂ocki committed
1261
1262
1263
1264
1265

        # with plain model
        assert_flos_extraction(trainer, trainer.model)

        # with enforced DataParallel
1266
        assert_flos_extraction(trainer, nn.DataParallel(trainer.model))
1267

1268
1269
1270
        trainer.train()
        self.assertTrue(isinstance(trainer.state.total_flos, float))

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
    def check_checkpoint_deletion(self, trainer, output_dir, expected):
        # Make fake checkpoints
        for n in [5, 10, 15, 20, 25]:
            os.makedirs(os.path.join(output_dir, f"{PREFIX_CHECKPOINT_DIR}-{n}"), exist_ok=True)
        trainer._rotate_checkpoints(output_dir=output_dir)
        glob_checkpoints = [str(x) for x in Path(output_dir).glob(f"{PREFIX_CHECKPOINT_DIR}-*")]
        values = [int(re.match(f".*{PREFIX_CHECKPOINT_DIR}-([0-9]+)", d).groups()[0]) for d in glob_checkpoints]
        self.assertSetEqual(set(values), set(expected))

    def test_checkpoint_rotation(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            # Without best model at end
            trainer = get_regression_trainer(output_dir=tmp_dir, save_total_limit=2)
            self.check_checkpoint_deletion(trainer, tmp_dir, [20, 25])

            # With best model at end
1287
1288
1289
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=2
            )
1290
1291
1292
1293
1294
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

            # Edge case: we don't always honor save_total_limit=1 if load_best_model_at_end=True to be able to resume
            # from checkpoint
1295
1296
1297
            trainer = get_regression_trainer(
                output_dir=tmp_dir, evaluation_strategy="steps", load_best_model_at_end=True, save_total_limit=1
            )
1298
1299
1300
1301
1302
1303
            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-25")
            self.check_checkpoint_deletion(trainer, tmp_dir, [25])

            trainer.state.best_model_checkpoint = os.path.join(tmp_dir, "checkpoint-5")
            self.check_checkpoint_deletion(trainer, tmp_dir, [5, 25])

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    def check_mem_metrics(self, trainer, check_func):
        metrics = trainer.train().metrics
        check_func("init_mem_cpu_alloc_delta", metrics)
        check_func("train_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("init_mem_gpu_alloc_delta", metrics)
            check_func("train_mem_gpu_alloc_delta", metrics)

        metrics = trainer.evaluate()
        check_func("eval_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("eval_mem_gpu_alloc_delta", metrics)

        metrics = trainer.predict(RegressionDataset()).metrics
        check_func("test_mem_cpu_alloc_delta", metrics)
        if torch.cuda.device_count() > 0:
            check_func("test_mem_gpu_alloc_delta", metrics)

    def test_mem_metrics(self):

        # with mem metrics enabled
1325
        trainer = get_regression_trainer(skip_memory_metrics=False)
1326
1327
1328
1329
1330
1331
        self.check_mem_metrics(trainer, self.assertIn)

        # with mem metrics disabled
        trainer = get_regression_trainer(skip_memory_metrics=True)
        self.check_mem_metrics(trainer, self.assertNotIn)

1332
1333
1334
1335
1336
1337
    @require_torch_gpu
    def test_fp16_full_eval(self):

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
1338
        n_gpus = get_gpu_count()
1339
1340

        bs = 8
1341
        eval_len = 16 * n_gpus
1342
1343
1344
1345
1346
1347
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. with mem metrics enabled
1348
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

        # 2. with mem metrics disabled
1369
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, fp16_full_eval=True, skip_memory_metrics=False)
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
        metrics = trainer.evaluate()
        fp16_init = metrics["init_mem_gpu_alloc_delta"]
        fp16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp16_init {fp16_init}")
            print(f"fp16_eval {fp16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: fp16_init == close to zero
        self.assertLess(fp16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(fp16_eval, 27_000)

        # 3. relative comparison fp32 vs full fp16
        # should be about half of fp16_init
        # perfect world: fp32_init/2 == fp16_eval
        self.assertAlmostEqual(fp16_eval, fp32_init / 2, delta=5_000)

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
    @require_torch_gpu
    @require_torch_bf16
    def test_bf16_full_eval(self):
        # note: most of the logic is the same as test_fp16_full_eval

        # this is a sensitive test so let's keep debugging printouts in place for quick diagnosis.
        # it's using pretty large safety margins, but small enough to detect broken functionality.
        debug = 0
        n_gpus = get_gpu_count()

        bs = 8
        eval_len = 16 * n_gpus
        # make the params somewhat big so that there will be enough RAM consumed to be able to
        # measure things. We should get about 64KB for a+b in fp32
        a = torch.ones(1000, bs) + 0.001
        b = torch.ones(1000, bs) - 0.001

        # 1. with mem metrics enabled
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        del trainer
        gc.collect()

        fp32_init = metrics["init_mem_gpu_alloc_delta"]
        fp32_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"fp32_init {fp32_init}")
            print(f"fp32_eval {fp32_eval}")

        # here we expect the model to be preloaded in trainer.__init__ and consume around 64K gpu ram.
        # perfect world: fp32_init == 64<<10
        self.assertGreater(fp32_init, 59_000)
        # after eval should be no extra memory allocated - with a small margin (other than the peak
        # memory consumption for the forward calculation that gets recovered)
        # perfect world: fp32_eval == close to zero
        self.assertLess(fp32_eval, 5_000)

        # 2. with mem metrics disabled
        trainer = get_regression_trainer(a=a, b=b, eval_len=eval_len, bf16_full_eval=True, skip_memory_metrics=False)
        metrics = trainer.evaluate()
        bf16_init = metrics["init_mem_gpu_alloc_delta"]
        bf16_eval = metrics["eval_mem_gpu_alloc_delta"]

        if debug:
            print(f"bf16_init {bf16_init}")
            print(f"bf16_eval {bf16_eval}")

        # here we expect the model to not be preloaded in trainer.__init__, so with a small margin it should be close to 0
        # perfect world: bf16_init == close to zero
        self.assertLess(bf16_init, 5_000)
        # here we put the model on device in eval and only `half()` of it, i.e. about 32K,(again we ignore the peak margin which gets returned back)
        # perfect world: fp32_init == 32<<10
        self.assertGreater(bf16_eval, 27_000)

        # 3. relative comparison fp32 vs full bf16
        # should be about half of bf16_init
        # perfect world: fp32_init/2 == bf16_eval
        self.assertAlmostEqual(bf16_eval, fp32_init / 2, delta=5_000)

1450
    def test_no_wd_param_group(self):
1451
        model = nn.Sequential(TstLayer(128), nn.ModuleList([TstLayer(128), TstLayer(128)]))
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
        trainer = Trainer(model=model)
        trainer.create_optimizer_and_scheduler(10)
        # fmt: off
        wd_names = ['0.linear1.weight', '0.linear2.weight', '1.0.linear1.weight', '1.0.linear2.weight', '1.1.linear1.weight', '1.1.linear2.weight']
        # fmt: on
        wd_params = [p for n, p in model.named_parameters() if n in wd_names]
        no_wd_params = [p for n, p in model.named_parameters() if n not in wd_names]
        self.assertListEqual(trainer.optimizer.param_groups[0]["params"], wd_params)
        self.assertListEqual(trainer.optimizer.param_groups[1]["params"], no_wd_params)

1462

Sylvain Gugger's avatar
Sylvain Gugger committed
1463
1464
1465
1466
1467
@require_torch
@is_staging_test
class TrainerIntegrationWithHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
1468
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
1469
1470
1471

    @classmethod
    def tearDownClass(cls):
1472
1473
        for model in ["test-trainer", "test-trainer-epoch", "test-trainer-step"]:
            try:
1474
                delete_repo(token=cls._token, name=model)
1475
1476
            except HTTPError:
                pass
Sylvain Gugger's avatar
Sylvain Gugger committed
1477
1478

        try:
1479
            delete_repo(token=cls._token, name="test-trainer-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1480
1481
1482
1483
1484
        except HTTPError:
            pass

    def test_push_to_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
1485
1486
1487
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer"),
                push_to_hub=True,
1488
                hub_token=self._token,
1489
1490
            )
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1491
1492
1493
1494
1495
1496

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]

1497
            self.assertEqual(repo_name, f"{USER}/test-trainer")
Sylvain Gugger's avatar
Sylvain Gugger committed
1498
1499
1500
1501
1502
1503
1504
1505
1506

            model = RegressionPreTrainedModel.from_pretrained(repo_name)
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

    def test_push_to_hub_in_organization(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(output_dir=tmp_dir)
            trainer.save_model()
1507
1508
1509
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-org"),
                push_to_hub=True,
1510
1511
                hub_model_id="valid_org/test-trainer-org",
                hub_token=self._token,
1512
            )
1513
            url = trainer.push_to_hub()
Sylvain Gugger's avatar
Sylvain Gugger committed
1514
1515
1516
1517
1518

            # Extract repo_name from the url
            re_search = re.search(ENDPOINT_STAGING + r"/([^/]+/[^/]+)/", url)
            self.assertTrue(re_search is not None)
            repo_name = re_search.groups()[0]
1519
            self.assertEqual(repo_name, "valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1520

1521
            model = RegressionPreTrainedModel.from_pretrained("valid_org/test-trainer-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
1522
1523
1524
            self.assertEqual(model.a.item(), trainer.model.a.item())
            self.assertEqual(model.b.item(), trainer.model.b.item())

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
    def get_commit_history(self, repo):
        commit_logs = subprocess.run(
            "git log".split(),
            stderr=subprocess.PIPE,
            stdout=subprocess.PIPE,
            check=True,
            encoding="utf-8",
            cwd=repo,
        ).stdout
        commits = commit_logs.split("\n\n")[1::2]
        return [commit.strip() for commit in commits]

    def test_push_to_hub_with_saves_each_epoch(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-epoch"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="epoch",
            )
            trainer.train()

        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-epoch", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
            expected_commits = [f"Training in progress, epoch {i}" for i in range(3, 0, -1)]
            expected_commits.append("initial commit")
            self.assertListEqual(commits, expected_commits)

    def test_push_to_hub_with_saves_each_n_steps(self):
1555
1556
1557
1558
        num_gpus = max(1, get_gpu_count())
        if num_gpus > 2:
            return

1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=os.path.join(tmp_dir, "test-trainer-step"),
                push_to_hub=True,
                hub_token=self._token,
                save_strategy="steps",
                save_steps=5,
            )
            trainer.train()

        with tempfile.TemporaryDirectory() as tmp_dir:
            _ = Repository(tmp_dir, clone_from=f"{USER}/test-trainer-step", use_auth_token=self._token)
            commits = self.get_commit_history(tmp_dir)
1572
1573
            total_steps = 20 // num_gpus
            expected_commits = [f"Training in progress, step {i}" for i in range(total_steps, 0, -5)]
1574
1575
1576
            expected_commits.append("initial commit")
            self.assertListEqual(commits, expected_commits)

Sylvain Gugger's avatar
Sylvain Gugger committed
1577

1578
1579
@require_torch
@require_optuna
1580
class TrainerHyperParameterOptunaIntegrationTest(unittest.TestCase):
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return {}

        def model_init(trial):
            if trial is not None:
                a = trial.suggest_int("a", -4, 4)
                b = trial.suggest_int("b", -4, 4)
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.params)

1607
1608
1609
1610
1611
        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1612
                evaluation_strategy=IntervalStrategy.EPOCH,
1613
                save_strategy=IntervalStrategy.EPOCH,
1614
1615
1616
1617
1618
1619
1620
1621
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(direction="minimize", hp_space=hp_space, hp_name=hp_name, n_trials=4)
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631


@require_torch
@require_ray
class TrainerHyperParameterRayIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

1632
    def ray_hyperparameter_search(self):
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            from ray import tune

            return {
                "a": tune.randint(-4, 4),
                "b": tune.randint(-4, 4),
            }

        def model_init(config):
1645
1646
1647
1648
1649
1650
1651
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
1663
                evaluation_strategy=IntervalStrategy.EPOCH,
1664
                save_strategy=IntervalStrategy.EPOCH,
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="ray", n_trials=4
            )
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685

    def test_hyperparameter_search(self):
        self.ray_hyperparameter_search()

    def test_hyperparameter_search_ray_client(self):
        import ray
        from ray.util.client.ray_client_helpers import ray_start_client_server

        with ray_start_client_server():
            assert ray.util.client.ray.is_connected()
            self.ray_hyperparameter_search()
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736


@require_torch
@require_sigopt
class TrainerHyperParameterSigOptIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):
            return [
                {"bounds": {"min": -4, "max": 4}, "name": "a", "type": "int"},
                {"bounds": {"min": -4, "max": 4}, "name": "b", "type": "int"},
            ]

        def model_init(trial):
            if trial is not None:
                a = trial.assignments["a"]
                b = trial.assignments["b"]
            else:
                a = 0
                b = 0
            config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(config)

        def hp_name(trial):
            return MyTrialShortNamer.shortname(trial.assignments)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="sigopt", n_trials=4
            )
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831


optim_test_params = []
if is_torch_available():
    default_adam_kwargs = {
        "betas": (TrainingArguments.adam_beta1, TrainingArguments.adam_beta2),
        "eps": TrainingArguments.adam_epsilon,
        "lr": TrainingArguments.learning_rate,
    }

    optim_test_params = [
        (
            OptimizerNames.ADAMW_HF,
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAMW_HF.value,
            transformers.optimization.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAMW_TORCH,
            torch.optim.AdamW,
            default_adam_kwargs,
        ),
        (
            OptimizerNames.ADAFACTOR,
            transformers.optimization.Adafactor,
            {
                "scale_parameter": False,
                "relative_step": False,
                "lr": TrainingArguments.learning_rate,
            },
        ),
    ]
    if is_apex_available():
        import apex

        optim_test_params.append(
            (
                OptimizerNames.ADAMW_APEX_FUSED,
                apex.optimizers.FusedAdam,
                default_adam_kwargs,
            )
        )


@require_torch
class TrainerOptimizerChoiceTest(unittest.TestCase):
    def check_optim_and_kwargs(self, optim: OptimizerNames, mandatory_kwargs, expected_cls):
        args = TrainingArguments(optim=optim, output_dir="None")
        actual_cls, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(args)
        self.assertEqual(expected_cls, actual_cls)
        self.assertIsNotNone(optim_kwargs)

        for p, v in mandatory_kwargs.items():
            self.assertTrue(p in optim_kwargs)
            actual_v = optim_kwargs[p]
            self.assertTrue(actual_v == v, f"Failed check for {p}. Expected {v}, but got {actual_v}.")

    @parameterized.expand(optim_test_params, skip_on_empty=True)
    def test_optim_supported(self, name: str, expected_cls, mandatory_kwargs):
        # exercises all the valid --optim options
        self.check_optim_and_kwargs(name, mandatory_kwargs, expected_cls)

        trainer = get_regression_trainer(optim=name)
        trainer.train()

    def test_fused_adam(self):
        # Pretend that apex is installed and mock apex.optimizers.FusedAdam exists.
        # Trainer.get_optimizer_cls_and_kwargs does not use FusedAdam, but only has to return a
        # class called, so mocking apex.optimizers.FusedAdam should be fine for testing and allow
        # the test to run without requiring an apex installation.
        mock = Mock()
        modules = {
            "apex": mock,
            "apex.optimizers": mock.optimizers,
            "apex.optimizers.FusedAdam": mock.optimizers.FusedAdam,
        }
        with patch.dict("sys.modules", modules):
            self.check_optim_and_kwargs(
                OptimizerNames.ADAMW_APEX_FUSED,
                default_adam_kwargs,
                mock.optimizers.FusedAdam,
            )

    def test_fused_adam_no_apex(self):
        args = TrainingArguments(optim=OptimizerNames.ADAMW_APEX_FUSED, output_dir="None")

        # Pretend that apex does not exist, even if installed. By setting apex to None, importing
        # apex will fail even if apex is installed.
        with patch.dict("sys.modules", {"apex.optimizers": None}):
            with self.assertRaises(ValueError):
                Trainer.get_optimizer_cls_and_kwargs(args)
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887


@require_torch
@require_wandb
class TrainerHyperParameterWandbIntegrationTest(unittest.TestCase):
    def setUp(self):
        args = TrainingArguments(".")
        self.n_epochs = args.num_train_epochs
        self.batch_size = args.train_batch_size

    def test_hyperparameter_search(self):
        class MyTrialShortNamer(TrialShortNamer):
            DEFAULTS = {"a": 0, "b": 0}

        def hp_space(trial):

            return {
                "method": "random",
                "metric": {},
                "parameters": {
                    "a": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
                    "b": {"distribution": "int_uniform", "min": 1, "max": 6},
                },
            }

        def model_init(config):
            if config is None:
                a = 0
                b = 0
            else:
                a = config["a"]
                b = config["b"]
            model_config = RegressionModelConfig(a=a, b=b, double_output=False)

            return RegressionPreTrainedModel(model_config)

        def hp_name(params):
            return MyTrialShortNamer.shortname(params)

        with tempfile.TemporaryDirectory() as tmp_dir:
            trainer = get_regression_trainer(
                output_dir=tmp_dir,
                learning_rate=0.1,
                logging_steps=1,
                evaluation_strategy=IntervalStrategy.EPOCH,
                save_strategy=IntervalStrategy.EPOCH,
                num_train_epochs=4,
                disable_tqdm=True,
                load_best_model_at_end=True,
                logging_dir="runs",
                run_name="test",
                model_init=model_init,
            )
            trainer.hyperparameter_search(
                direction="minimize", hp_space=hp_space, hp_name=hp_name, backend="wandb", n_trials=4, anonymous="must"
            )