run_glue.py 28 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
import logging
import os
import random
25
import json
thomwolf's avatar
thomwolf committed
26
27
28
29
30
31

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
32
33
34
35
36
37

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
38
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
                                  BertForSequenceClassification, BertTokenizer,
42
43
44
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
45
46
47
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
48
49
50
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
Lysandre's avatar
Lysandre committed
51
52
53
54
55
                                  DistilBertTokenizer,
                                  AlbertConfig,
                                  AlbertForSequenceClassification, 
                                  AlbertTokenizer,
                                )
thomwolf's avatar
thomwolf committed
56

57
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
58

59
60
61
62
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
63
64
65

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
66
67
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
68
69

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
70
71
72
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
73
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
Lysandre's avatar
Lysandre committed
74
75
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer),
    'albert': (AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer)
76
}
thomwolf's avatar
thomwolf committed
77

thomwolf's avatar
thomwolf committed
78
79
80
81
82
83
84
85
86

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
87
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
88
89
90
91
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
92
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
93
94
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
95

thomwolf's avatar
thomwolf committed
96
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
97
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
98
99
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
100
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
101

thomwolf's avatar
thomwolf committed
102
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
103
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
104
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
105
106
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
107
        ]
Lysandre's avatar
Lysandre committed
108

thomwolf's avatar
thomwolf committed
109
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
110
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
111
112
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
113
            from apex import amp
thomwolf's avatar
thomwolf committed
114
115
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
116
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
117

118
119
120
121
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
128
129
    # Train!
    logger.info("***** Running training *****")
130
131
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
132
133
134
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
135
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
136
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
137
138

    global_step = 0
thomwolf's avatar
thomwolf committed
139
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
140
    model.zero_grad()
thomwolf's avatar
thomwolf committed
141
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
142
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
143
144
145
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
146
            model.train()
thomwolf's avatar
thomwolf committed
147
            batch = tuple(t.to(args.device) for t in batch)
148
149
150
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
151
152
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
153
            outputs = model(**inputs)
154
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
155
156
157
158
159
160

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
161
162
163
164
165
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
166
167

            tr_loss += loss.item()
168
            if (step + 1) % args.gradient_accumulation_steps == 0:
169
170
171
172
173
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
174
                optimizer.step()
thomwolf's avatar
thomwolf committed
175
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
176
                model.zero_grad()
thomwolf's avatar
thomwolf committed
177
                global_step += 1
thomwolf's avatar
thomwolf committed
178

thomwolf's avatar
thomwolf committed
179
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
Juha Kiili's avatar
Juha Kiili committed
180
                    logs = {}
thomwolf's avatar
thomwolf committed
181
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
182
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
183
                        for key, value in results.items():
184
                            eval_key = 'eval_{}'.format(key)
Juha Kiili's avatar
Juha Kiili committed
185
186
                            logs[eval_key] = value

187
188
189
190
                    loss_scalar = (tr_loss - logging_loss) / args.logging_steps
                    learning_rate_scalar = scheduler.get_lr()[0]
                    logs['learning_rate'] = learning_rate_scalar
                    logs['loss'] = loss_scalar
thomwolf's avatar
thomwolf committed
191
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
192

Juha Kiili's avatar
Juha Kiili committed
193
194
195
                    for key, value in logs.items():
                        tb_writer.add_scalar(key, value, global_step)
                    print(json.dumps({**logs, **{'step': global_step}}))
thomwolf's avatar
thomwolf committed
196
197
198
199
200
201
202
203
204

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
205
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
206

thomwolf's avatar
thomwolf committed
207
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
208
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
209
210
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
211
            train_iterator.close()
thomwolf's avatar
thomwolf committed
212
            break
thomwolf's avatar
thomwolf committed
213

thomwolf's avatar
thomwolf committed
214
215
216
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
217
218
219
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
220
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
221
222
223
224
225
226
227
228
229
230
231
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
232
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
233
234
235
236
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
237
238
239
240
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
241
        # Eval!
thomwolf's avatar
thomwolf committed
242
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
243
244
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
245
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
246
247
248
249
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
250
            model.eval()
thomwolf's avatar
thomwolf committed
251
252
253
254
255
256
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
257
258
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
259
260
261
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
262
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

279
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
280
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
281
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
282
283
284
285
286
287
288
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
289
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
290
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
291
292
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
293
    processor = processors[task]()
294
295
296
297
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
298
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
299
300
        str(args.max_seq_length),
        str(task)))
301
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
302
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
303
304
        features = torch.load(cached_features_file)
    else:
305
306
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
307
308
309
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
310
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
311
312
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
313
314
315
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
316
317
318
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
319
        )
320
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
321
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
322
323
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
324
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
325
326
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

327
328
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
329
330
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
331
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
332
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
333
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
334
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
Lysandre's avatar
Lysandre committed
335
 
thomwolf's avatar
thomwolf committed
336
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
337
    return dataset
thomwolf's avatar
thomwolf committed
338
339


thomwolf's avatar
thomwolf committed
340
341
342
343
344
345
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
346
347
348
349
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
350
    parser.add_argument("--task_name", default=None, type=str, required=True,
351
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
352
353
354
355
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
356
357
358
359
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
360
361
362
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
363
364
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
365
366
367
368
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
369
370
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
371
372
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
373
374

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
375
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
376
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
377
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
378
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
Lysandre's avatar
Lysandre committed
379
                        help="Number of updates steps to accumulate before performing a backward/update pass.")     
thomwolf's avatar
thomwolf committed
380
381
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
382
383
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
384
385
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
386
387
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
388
389
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
390
391
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
392
393
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
394

thomwolf's avatar
thomwolf committed
395
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
396
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
397
398
399
400
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
401
402
403
404
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
405
406
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
407
408
409
410
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
411
412
413
414
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
415
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
416
417
418
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
419
420
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
421
422
423
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
424
425
426
427
428
429
430
431
432
433
434
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
435
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
436
437
438
439
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
440
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
441
442
443
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
444
445
446
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
447
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
448
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
449

thomwolf's avatar
thomwolf committed
450
451
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
452
453

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
454
455
456
457
458
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
459
460
461
462
463
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
464
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
465

466
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
467
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
468
469
470
471
472
473
474
475
476
477
478
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
479
480

    if args.local_rank == 0:
481
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
482

thomwolf's avatar
thomwolf committed
483
    model.to(args.device)
thomwolf's avatar
thomwolf committed
484

thomwolf's avatar
thomwolf committed
485
486
    logger.info("Training/evaluation parameters %s", args)

487

thomwolf's avatar
thomwolf committed
488
    # Training
thomwolf's avatar
thomwolf committed
489
    if args.do_train:
490
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
491
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
492
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
493
494


thomwolf's avatar
thomwolf committed
495
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
496
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
497
498
499
500
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
501
        logger.info("Saving model checkpoint to %s", args.output_dir)
502
503
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
504
505
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
506
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
507
508

        # Good practice: save your training arguments together with the trained model
509
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
510

511
        # Load a trained model and vocabulary that you have fine-tuned
512
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
513
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
514
        model.to(args.device)
thomwolf's avatar
thomwolf committed
515

516

thomwolf's avatar
thomwolf committed
517
    # Evaluation
thomwolf's avatar
thomwolf committed
518
    results = {}
thomwolf's avatar
thomwolf committed
519
    if args.do_eval and args.local_rank in [-1, 0]:
520
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
521
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
522
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
523
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
524
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
525
526
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
527
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
528
529
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
530
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
531
            model.to(args.device)
532
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
533
534
535
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
536
    return results
thomwolf's avatar
thomwolf committed
537
538
539
540


if __name__ == "__main__":
    main()