run_glue.py 25.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
31
from tensorboardX import SummaryWriter
thomwolf's avatar
thomwolf committed
32
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
35
36
37
38
from pytorch_transformers import (WEIGHTS_NAME, BertConfig,
                                  BertForSequenceClassification, BertTokenizer,
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
thomwolf's avatar
thomwolf committed
39
                                  XLNetTokenizer)
thomwolf's avatar
thomwolf committed
40
41
42

from pytorch_transformers import AdamW, WarmupLinearSchedule

thomwolf's avatar
thomwolf committed
43
44
from utils_glue import (compute_metrics, convert_examples_to_features,
                        output_modes, processors)
thomwolf's avatar
thomwolf committed
45
46
47

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
48
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
49
50

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
51
52
53
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
54
}
thomwolf's avatar
thomwolf committed
55

thomwolf's avatar
thomwolf committed
56
57
58
59
60
61
62
63
64

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
65
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
66
67
68
69
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
70
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
71
72
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
73

thomwolf's avatar
thomwolf committed
74
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
75
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
76
77
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
78
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
79

thomwolf's avatar
thomwolf committed
80
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
81
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
82
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
83
84
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
85
        ]
thomwolf's avatar
thomwolf committed
86
87
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
thomwolf's avatar
thomwolf committed
88
89
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
90
            from apex import amp
thomwolf's avatar
thomwolf committed
91
92
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
93
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
94

95
96
97
98
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
99
100
101
102
103
104
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
105
106
    # Train!
    logger.info("***** Running training *****")
107
108
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
109
110
111
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
112
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
113
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
114
115

    global_step = 0
thomwolf's avatar
thomwolf committed
116
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
117
    model.zero_grad()
thomwolf's avatar
thomwolf committed
118
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
119
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
120
121
122
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
123
            model.train()
thomwolf's avatar
thomwolf committed
124
            batch = tuple(t.to(args.device) for t in batch)
125
126
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
thomwolf's avatar
thomwolf committed
127
                      'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
128
                      'labels':         batch[3]}
Peiqin Lin's avatar
typos  
Peiqin Lin committed
129
130
            outputs = model(**inputs)
            loss = outputs[0]  # model outputs are always tuple in pytorch-transformers (see doc)
thomwolf's avatar
thomwolf committed
131
132
133
134
135
136

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
137
138
139
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
thomwolf's avatar
thomwolf committed
140
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
141
142
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
143
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
thomwolf's avatar
thomwolf committed
144
145
146

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
thomwolf's avatar
thomwolf committed
147
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
148
                optimizer.step()
thomwolf's avatar
thomwolf committed
149
                model.zero_grad()
thomwolf's avatar
thomwolf committed
150
                global_step += 1
thomwolf's avatar
thomwolf committed
151

thomwolf's avatar
thomwolf committed
152
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
153
                    # Log metrics
thomwolf's avatar
thomwolf committed
154
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
155
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
156
157
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
158
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
159
160
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
161
162
163
164
165
166
167
168
169

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
170
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
171

thomwolf's avatar
thomwolf committed
172
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
173
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
174
175
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
176
            train_iterator.close()
thomwolf's avatar
thomwolf committed
177
            break
thomwolf's avatar
thomwolf committed
178

thomwolf's avatar
thomwolf committed
179
180
181
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
182
183
184
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
185
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
186
187
188
189
190
191
192
193
194
195
196
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
197
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
198
199
200
201
202
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

        # Eval!
thomwolf's avatar
thomwolf committed
203
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
204
205
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
206
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
207
208
209
210
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
211
            model.eval()
thomwolf's avatar
thomwolf committed
212
213
214
215
216
217
218
219
220
221
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None,  # XLM don't use segment_ids
                          'labels':         batch[3]}
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
222
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

        output_eval_file = os.path.join(eval_output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
241
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
242
243
244
245
246
247
248
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
249
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
thomwolf's avatar
thomwolf committed
250
251
252
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
253
    processor = processors[task]()
254
255
256
257
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
258
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
259
260
        str(args.max_seq_length),
        str(task)))
thomwolf's avatar
thomwolf committed
261
    if os.path.exists(cached_features_file):
thomwolf's avatar
thomwolf committed
262
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
263
264
        features = torch.load(cached_features_file)
    else:
265
266
267
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
268
        features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer, output_mode,
269
            cls_token_at_end=bool(args.model_type in ['xlnet']),            # xlnet has a cls token at the end
270
            cls_token=tokenizer.cls_token,
271
            sep_token=tokenizer.sep_token,
thomwolf's avatar
thomwolf committed
272
            cls_token_segment_id=2 if args.model_type in ['xlnet'] else 0,
273
274
275
            pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0)
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
276
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
277
278
            torch.save(features, cached_features_file)

thomwolf's avatar
thomwolf committed
279
280
281
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

282
283
284
285
286
287
288
289
290
291
292
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    if output_mode == "classification":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
    elif output_mode == "regression":
        all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.float)

    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
    return dataset
thomwolf's avatar
thomwolf committed
293
294


thomwolf's avatar
thomwolf committed
295
296
297
298
299
300
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
301
302
303
304
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
305
    parser.add_argument("--task_name", default=None, type=str, required=True,
306
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
307
308
309
310
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
311
312
313
314
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
315
316
317
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
318
319
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
320
321
322
323
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
324
325
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
326
327
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
328
329

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
330
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
331
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
332
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
333
334
335
336
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
337
338
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
339
340
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
341
342
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
343
344
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
345
346
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
347
348
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
349

thomwolf's avatar
thomwolf committed
350
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
351
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
352
353
354
355
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
356
357
358
359
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
360
361
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
362
363
364
365
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
366
367
368
369
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
370
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
371
372
373
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
374
375
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
376
377
378
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
379
380
381
382
383
384
385
386
387
388
389
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
390
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
391
392
393
394
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
395
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
396
397
398
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
399
400
401
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
402
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
403
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
404

thomwolf's avatar
thomwolf committed
405
406
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
407
408

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
409
410
411
412
413
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
414
415
416
417
418
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
419
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
420

421
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
422
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
423
424
425
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
    model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config)
thomwolf's avatar
thomwolf committed
426
427

    if args.local_rank == 0:
428
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
429

thomwolf's avatar
thomwolf committed
430
    model.to(args.device)
thomwolf's avatar
thomwolf committed
431

thomwolf's avatar
thomwolf committed
432
433
    logger.info("Training/evaluation parameters %s", args)

434

thomwolf's avatar
thomwolf committed
435
    # Training
thomwolf's avatar
thomwolf committed
436
    if args.do_train:
437
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
438
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
439
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
440
441


thomwolf's avatar
thomwolf committed
442
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
thomwolf's avatar
thomwolf committed
443
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
444
445
446
447
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
448
        logger.info("Saving model checkpoint to %s", args.output_dir)
449
450
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
451
452
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
453
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
454
455

        # Good practice: save your training arguments together with the trained model
456
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
457

458
        # Load a trained model and vocabulary that you have fine-tuned
459
460
        model = model_class.from_pretrained(args.output_dir)
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
461
        model.to(args.device)
thomwolf's avatar
thomwolf committed
462

463

thomwolf's avatar
thomwolf committed
464
    # Evaluation
thomwolf's avatar
thomwolf committed
465
    results = {}
thomwolf's avatar
thomwolf committed
466
    if args.do_eval and args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
467
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
468
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
469
470
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
471
472
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
473
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
thomwolf's avatar
thomwolf committed
474
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
475
476
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
477
478
479
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
480
    return results
thomwolf's avatar
thomwolf committed
481
482
483
484


if __name__ == "__main__":
    main()