run_glue.py 26.6 KB
Newer Older
1
#!/usr/bin/env python
thomwolf's avatar
thomwolf committed
2
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
3
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lysandre's avatar
Lysandre committed
16
""" Finetuning the library models for sequence classification on GLUE."""
Sylvain Gugger's avatar
Sylvain Gugger committed
17
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
thomwolf's avatar
thomwolf committed
18
19
20

import logging
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
21
import random
22
import sys
23
from dataclasses import dataclass, field
Sylvain Gugger's avatar
Sylvain Gugger committed
24
from typing import Optional
thomwolf's avatar
thomwolf committed
25

26
import datasets
27
import evaluate
thomwolf's avatar
thomwolf committed
28
import numpy as np
29
from datasets import load_dataset
thomwolf's avatar
thomwolf committed
30

Sylvain Gugger's avatar
Sylvain Gugger committed
31
import transformers
32
from transformers import (
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
35
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
36
    DataCollatorWithPadding,
Sylvain Gugger's avatar
Sylvain Gugger committed
37
    EvalPrediction,
38
    HfArgumentParser,
Sylvain Gugger's avatar
Sylvain Gugger committed
39
    PretrainedConfig,
Julien Chaumond's avatar
Julien Chaumond committed
40
    Trainer,
41
    TrainingArguments,
Sylvain Gugger's avatar
Sylvain Gugger committed
42
    default_data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
43
    set_seed,
44
)
45
from transformers.trainer_utils import get_last_checkpoint
46
from transformers.utils import check_min_version, send_example_telemetry
47
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
48

Aymeric Augustin's avatar
Aymeric Augustin committed
49

50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Sylvain Gugger's avatar
Sylvain Gugger committed
51
check_min_version("4.32.0.dev0")
Lysandre's avatar
Lysandre committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
54

Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57
58
59
60
61
62
63
64
65
task_to_keys = {
    "cola": ("sentence", None),
    "mnli": ("premise", "hypothesis"),
    "mrpc": ("sentence1", "sentence2"),
    "qnli": ("question", "sentence"),
    "qqp": ("question1", "question2"),
    "rte": ("sentence1", "sentence2"),
    "sst2": ("sentence", None),
    "stsb": ("sentence1", "sentence2"),
    "wnli": ("sentence1", "sentence2"),
}
thomwolf's avatar
thomwolf committed
66
67
68

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
69

Sylvain Gugger's avatar
Sylvain Gugger committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.

    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """

    task_name: Optional[str] = field(
        default=None,
        metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
    )
84
85
86
87
88
89
    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
90
91
92
    max_seq_length: int = field(
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
95
96
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
97
98
99
100
101
102
103
104
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
            "help": (
                "Whether to pad all samples to `max_seq_length`. "
                "If False, will pad the samples dynamically when batching to the maximum length in the batch."
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
109
110
        },
    )
111
112
113
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
114
115
116
117
            "help": (
                "For debugging purposes or quicker training, truncate the number of training examples to this "
                "value if set."
            )
118
119
        },
    )
120
    max_eval_samples: Optional[int] = field(
121
122
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
125
126
            "help": (
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
                "value if set."
            )
127
128
        },
    )
129
    max_predict_samples: Optional[int] = field(
130
131
        default=None,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
132
133
134
135
            "help": (
                "For debugging purposes or quicker training, truncate the number of prediction examples to this "
                "value if set."
            )
136
137
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
138
139
140
141
142
143
    train_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the training data."}
    )
    validation_file: Optional[str] = field(
        default=None, metadata={"help": "A csv or a json file containing the validation data."}
    )
144
    test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
Sylvain Gugger's avatar
Sylvain Gugger committed
145
146
147
148
149
150

    def __post_init__(self):
        if self.task_name is not None:
            self.task_name = self.task_name.lower()
            if self.task_name not in task_to_keys.keys():
                raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
151
152
        elif self.dataset_name is not None:
            pass
Sylvain Gugger's avatar
Sylvain Gugger committed
153
        elif self.train_file is None or self.validation_file is None:
154
            raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        else:
156
157
158
159
160
161
            train_extension = self.train_file.split(".")[-1]
            assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            validation_extension = self.validation_file.split(".")[-1]
            assert (
                validation_extension == train_extension
            ), "`validation_file` should have the same extension (csv or json) as `train_file`."
Sylvain Gugger's avatar
Sylvain Gugger committed
162
163


164
165
166
167
168
169
170
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
Julien Chaumond's avatar
Julien Chaumond committed
171
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
172
    )
173
174
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
175
    )
176
177
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
178
    )
179
    cache_dir: Optional[str] = field(
180
181
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
182
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
183
184
185
186
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
187
188
189
190
191
192
193
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
194
            "help": (
195
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
Sylvain Gugger's avatar
Sylvain Gugger committed
196
197
                "with private models)."
            )
198
199
        },
    )
200
201
202
203
    ignore_mismatched_sizes: bool = field(
        default=False,
        metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
    )
204
205


206
def main():
Julien Chaumond's avatar
Julien Chaumond committed
207
208
209
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
210

211
212
213
214
215
216
217
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
thomwolf's avatar
thomwolf committed
218

219
220
221
222
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
    send_example_telemetry("run_glue", model_args, data_args)

thomwolf's avatar
thomwolf committed
223
    # Setup logging
224
    logging.basicConfig(
225
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
226
        datefmt="%m/%d/%Y %H:%M:%S",
227
        handlers=[logging.StreamHandler(sys.stdout)],
228
    )
229

230
231
232
233
    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

234
235
236
237
238
239
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
240
241

    # Log on each process the small summary:
242
    logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
243
244
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
245
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
246
    logger.info(f"Training/evaluation parameters {training_args}")
thomwolf's avatar
thomwolf committed
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
263
    # Set seed before initializing model.
Julien Chaumond's avatar
Julien Chaumond committed
264
    set_seed(training_args.seed)
thomwolf's avatar
thomwolf committed
265

Sylvain Gugger's avatar
Sylvain Gugger committed
266
    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
Sylvain Gugger's avatar
Sylvain Gugger committed
267
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
Sylvain Gugger's avatar
Sylvain Gugger committed
268
269
270
271
272
273
274
275
276
277
278
279
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
280
281
282
283
284
285
        raw_datasets = load_dataset(
            "glue",
            data_args.task_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
286
287
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
288
        raw_datasets = load_dataset(
289
290
291
292
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
293
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
294
    else:
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {"train": data_args.train_file, "validation": data_args.validation_file}

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError("Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
317
318
319
320
321
322
            raw_datasets = load_dataset(
                "csv",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
323
324
        else:
            # Loading a dataset from local json files
325
326
327
328
329
330
            raw_datasets = load_dataset(
                "json",
                data_files=data_files,
                cache_dir=model_args.cache_dir,
                use_auth_token=True if model_args.use_auth_token else None,
            )
Sylvain Gugger's avatar
Sylvain Gugger committed
331
332
333
334
335
336
337
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
338
            label_list = raw_datasets["train"].features["label"].names
Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
341
342
343
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
344
        is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
Sylvain Gugger's avatar
Sylvain Gugger committed
345
346
347
348
349
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
350
            label_list = raw_datasets["train"].unique("label")
Sylvain Gugger's avatar
Sylvain Gugger committed
351
352
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)
thomwolf's avatar
thomwolf committed
353
354

    # Load pretrained model and tokenizer
Julien Chaumond's avatar
Julien Chaumond committed
355
    #
Sylvain Gugger's avatar
Sylvain Gugger committed
356
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
Julien Chaumond's avatar
Julien Chaumond committed
357
    # download model & vocab.
358
    config = AutoConfig.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
359
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
360
        num_labels=num_labels,
Julien Chaumond's avatar
Julien Chaumond committed
361
362
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
363
364
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
365
    )
366
    tokenizer = AutoTokenizer.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
367
368
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
Sylvain Gugger's avatar
Sylvain Gugger committed
369
        use_fast=model_args.use_fast_tokenizer,
370
371
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
372
    )
373
    model = AutoModelForSequenceClassification.from_pretrained(
Julien Chaumond's avatar
Julien Chaumond committed
374
375
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
376
        config=config,
Julien Chaumond's avatar
Julien Chaumond committed
377
        cache_dir=model_args.cache_dir,
378
379
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
380
        ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
381
    )
thomwolf's avatar
thomwolf committed
382

383
    # Preprocessing the raw_datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
384
385
386
387
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
388
        non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
Sylvain Gugger's avatar
Sylvain Gugger committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
thomwolf's avatar
thomwolf committed
403

Sylvain Gugger's avatar
Sylvain Gugger committed
404
405
406
407
408
    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (
        model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
        and data_args.task_name is not None
409
        and not is_regression
Sylvain Gugger's avatar
Sylvain Gugger committed
410
411
412
    ):
        # Some have all caps in their config, some don't.
        label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
413
        if sorted(label_name_to_id.keys()) == sorted(label_list):
414
            label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
Sylvain Gugger's avatar
Sylvain Gugger committed
415
        else:
416
            logger.warning(
Sylvain Gugger's avatar
Sylvain Gugger committed
417
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
418
                f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}."
Sylvain Gugger's avatar
Sylvain Gugger committed
419
420
                "\nIgnoring the model labels as a result.",
            )
421
    elif data_args.task_name is None and not is_regression:
Sylvain Gugger's avatar
Sylvain Gugger committed
422
        label_to_id = {v: i for i, v in enumerate(label_list)}
423

424
425
426
    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {id: label for label, id in config.label2id.items()}
427
428
429
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {id: label for label, id in config.label2id.items()}
430

431
    if data_args.max_seq_length > tokenizer.model_max_length:
432
        logger.warning(
433
434
435
436
437
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
438
439
440
441
442
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
443
        result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
Sylvain Gugger's avatar
Sylvain Gugger committed
444
445
446

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
447
            result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
Sylvain Gugger's avatar
Sylvain Gugger committed
448
449
        return result

450
451
452
453
454
455
456
    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
457
    if training_args.do_train:
458
        if "train" not in raw_datasets:
459
            raise ValueError("--do_train requires a train dataset")
460
        train_dataset = raw_datasets["train"]
461
        if data_args.max_train_samples is not None:
462
463
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
464

465
    if training_args.do_eval:
466
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
467
            raise ValueError("--do_eval requires a validation dataset")
468
        eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
469
        if data_args.max_eval_samples is not None:
470
471
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
472
473

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
474
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
475
            raise ValueError("--do_predict requires a test dataset")
476
        predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
477
        if data_args.max_predict_samples is not None:
478
479
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
480
481

    # Log a few random samples from the training set:
482
483
484
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
Sylvain Gugger's avatar
Sylvain Gugger committed
485
486
487

    # Get the metric function
    if data_args.task_name is not None:
488
        metric = evaluate.load("glue", data_args.task_name)
489
490
    elif is_regression:
        metric = evaluate.load("mse")
491
    else:
492
        metric = evaluate.load("accuracy")
Sylvain Gugger's avatar
Sylvain Gugger committed
493
494
495
496
497
498

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
499
500
501
502
        result = metric.compute(predictions=preds, references=p.label_ids)
        if len(result) > 1:
            result["combined_score"] = np.mean(list(result.values())).item()
        return result
thomwolf's avatar
thomwolf committed
503

504
505
    # Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
    # we already did the padding.
506
507
508
509
510
511
512
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

Julien Chaumond's avatar
Julien Chaumond committed
513
514
515
516
    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
517
        train_dataset=train_dataset if training_args.do_train else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
518
519
520
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
521
        data_collator=data_collator,
Julien Chaumond's avatar
Julien Chaumond committed
522
    )
thomwolf's avatar
thomwolf committed
523

thomwolf's avatar
thomwolf committed
524
    # Training
Julien Chaumond's avatar
Julien Chaumond committed
525
    if training_args.do_train:
526
        checkpoint = None
527
528
529
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
530
531
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
532
        metrics = train_result.metrics
533
534
535
536
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
537

Sylvain Gugger's avatar
Sylvain Gugger committed
538
        trainer.save_model()  # Saves the tokenizer too for easy upload
thomwolf's avatar
thomwolf committed
539

540
541
542
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
543

thomwolf's avatar
thomwolf committed
544
    # Evaluation
545
    if training_args.do_eval:
Julien Chaumond's avatar
Julien Chaumond committed
546
547
548
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
Sylvain Gugger's avatar
Sylvain Gugger committed
549
        tasks = [data_args.task_name]
Julien Chaumond's avatar
Julien Chaumond committed
550
551
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
552
            tasks.append("mnli-mm")
553
554
555
556
557
            valid_mm_dataset = raw_datasets["validation_mismatched"]
            if data_args.max_eval_samples is not None:
                max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples)
                valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples))
            eval_datasets.append(valid_mm_dataset)
558
            combined = {}
Julien Chaumond's avatar
Julien Chaumond committed
559

Sylvain Gugger's avatar
Sylvain Gugger committed
560
        for eval_dataset, task in zip(eval_datasets, tasks):
561
            metrics = trainer.evaluate(eval_dataset=eval_dataset)
Julien Chaumond's avatar
Julien Chaumond committed
562

563
564
565
566
            max_eval_samples = (
                data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
            )
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
567

568
569
            if task == "mnli-mm":
                metrics = {k + "_mm": v for k, v in metrics.items()}
570
            if task is not None and "mnli" in task:
571
572
                combined.update(metrics)

573
            trainer.log_metrics("eval", metrics)
574
            trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
thomwolf's avatar
thomwolf committed
575

576
    if training_args.do_predict:
577
        logger.info("*** Predict ***")
Sylvain Gugger's avatar
Sylvain Gugger committed
578
579
580

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
581
        predict_datasets = [predict_dataset]
582
        if data_args.task_name == "mnli":
Sylvain Gugger's avatar
Sylvain Gugger committed
583
            tasks.append("mnli-mm")
584
            predict_datasets.append(raw_datasets["test_mismatched"])
585

586
        for predict_dataset, task in zip(predict_datasets, tasks):
Sylvain Gugger's avatar
Sylvain Gugger committed
587
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
588
            predict_dataset = predict_dataset.remove_columns("label")
589
            predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
Sylvain Gugger's avatar
Sylvain Gugger committed
590
            predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
591

592
            output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
Sylvain Gugger's avatar
Sylvain Gugger committed
593
            if trainer.is_world_process_zero():
594
595
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
596
597
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
Sylvain Gugger's avatar
Sylvain Gugger committed
598
599
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
600
                        else:
Sylvain Gugger's avatar
Sylvain Gugger committed
601
602
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
thomwolf's avatar
thomwolf committed
603

604
605
606
607
608
609
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
Sylvain Gugger's avatar
Sylvain Gugger committed
610

611
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
612
        trainer.push_to_hub(**kwargs)
613
614
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
615

thomwolf's avatar
thomwolf committed
616

Lysandre Debut's avatar
Lysandre Debut committed
617
618
619
620
621
def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


thomwolf's avatar
thomwolf committed
622
623
if __name__ == "__main__":
    main()