run_squad.py 29.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
20
from transformers.data.metrics.squad_metrics import compute_predictions_logits, compute_predictions_log_probs, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
import numpy as np
import torch
LysandreJik's avatar
Cleanup  
LysandreJik committed
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
31
32
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
46
                                  XLNetTokenizer,
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
47

Lysandre's avatar
Lysandre committed
48
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
49
50
51

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
52
53
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
54
55

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
56
57
58
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
59
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
60
61
}

thomwolf's avatar
thomwolf committed
62
63
64
65
66
67
68
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

69
70
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
71

72
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
73
74
75
76
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

77
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
78
79
80
81
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
82
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
83
84
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
85
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
86

87
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
88
89
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
90
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
91
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
LysandreJik's avatar
Cleanup  
LysandreJik committed
92
    ]
93
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
94
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
LysandreJik's avatar
Cleanup  
LysandreJik committed
95

thomwolf's avatar
thomwolf committed
96
97
98
99
100
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
101
        
thomwolf's avatar
thomwolf committed
102
103
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

104
105
106
107
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
114
115
116
117
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
118
119
120
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
121
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
122
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
123
124
125

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
126
127
128
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
LysandreJik's avatar
Cleanup  
LysandreJik committed
129
    
130
131
132
133
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
134
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
135
136
137
138
139
140
141
142

            inputs = {
                'input_ids':       batch[0],
                'attention_mask':  batch[1],
                'start_positions': batch[3],
                'end_positions':   batch[4]
            }

143
144
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
145

146
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
147
148
                inputs.update({'cls_index': batch[5], 'p_mask': batch[6]})

Peiqin Lin's avatar
typos  
Peiqin Lin committed
149
            outputs = model(**inputs)
150
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
151

152
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
153
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
154
155
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
156

157
158
159
160
161
162
163
164
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
165
166
167
168
169
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

170
                optimizer.step()
171
                scheduler.step()  # Update learning rate schedule
172
173
174
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
175
                # Log metrics
176
177
178
179
180
181
182
183
184
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
185
                # Save model checkpoint
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
202
203
204
    if args.local_rank in [-1, 0]:
        tb_writer.close()

205
206
207
208
209
210
211
212
213
214
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
215

216
217
218
219
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
220
221
222
223
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

224
225
226
227
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
228

229
    all_results = []
230
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
231

232
233
234
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
235

236
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
237
238
239
240
241
            inputs = {
                'input_ids':      batch[0],
                'attention_mask': batch[1]
            }
            
242
243
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
LysandreJik's avatar
Cleanup  
LysandreJik committed
244

245
            example_indices = batch[3]
LysandreJik's avatar
Cleanup  
LysandreJik committed
246
247
            
            # XLNet and XLM use more arguments for their predictions
248
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
249
250
                inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})

251
252
253
254
255
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
256

LysandreJik's avatar
LysandreJik committed
257
258
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
259
260
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
261
262
263
264
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
265
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
                cls_logits = output[4]

                result = SquadResult(
                    unique_id, start_logits, end_logits, 
                    start_top_index=start_top_index, 
                    end_top_index=end_top_index, 
                    cls_logits=cls_logits
                )

            else:
                start_logits, end_logits = output
                result = SquadResult(
                    unique_id, start_logits, end_logits
                )

281
            all_results.append(result)
282

283
284
285
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
286
    # Compute predictions
287
288
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
289

290
291
292
293
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
294

LysandreJik's avatar
Cleanup  
LysandreJik committed
295
    # XLNet and XLM use a more complex post-processing procedure
296
    if args.model_type in ['xlnet', 'xlm']:
297
        predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
298
                        args.max_answer_length, output_prediction_file,
LysandreJik's avatar
Cleanup  
LysandreJik committed
299
                        output_nbest_file, output_null_log_odds_file,
300
301
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
302
    else:
303
        predictions = compute_predictions_logits(examples, features, all_results, args.n_best_size,
304
305
306
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
307

LysandreJik's avatar
Cleanup  
LysandreJik committed
308
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
309
    results = squad_evaluate(examples, predictions)
310
311
312
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
313
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
314
315
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

316
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
317
318
    input_dir = args.data_dir if args.data_dir else "."
    cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
319
        'dev' if evaluate else 'train',
320
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
LysandreJik's avatar
Cleanup  
LysandreJik committed
321
322
323
324
        str(args.max_seq_length))
    )

    # Init features and dataset from cache if it exists
325
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
326
        logger.info("Loading features from cached file %s", cached_features_file)
327
328
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
329
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
330
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
331

LysandreJik's avatar
Cleanup  
LysandreJik committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
        if not args.data_dir:
            try:
                import tensorflow_datasets as tfds
            except ImportError:
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")

            if args.version_2_with_negative:
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")

            tfds_examples = tfds.load("squad")
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
            examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
LysandreJik's avatar
LysandreJik committed
346

347
        features, dataset = squad_convert_examples_to_features( 
Lysandre's avatar
Lysandre committed
348
349
350
351
352
353
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
354
            return_dataset='pt'
Lysandre's avatar
Lysandre committed
355
356
        )

thomwolf's avatar
thomwolf committed
357
358
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
359
            torch.save({"features": features, "dataset": dataset}, cached_features_file)
thomwolf's avatar
thomwolf committed
360

VictorSanh's avatar
VictorSanh committed
361
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
362
363
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

364
365
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
366
367
    return dataset

368
369
370
371
372

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
373
374
375
376
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
377
378
379
380
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
LysandreJik's avatar
Cleanup  
LysandreJik committed
381
382
    parser.add_argument("--data_dir", default=None, type=str,
                        help="The input data dir. Should contain the .json files for the task. If not specified, will run with tensorflow_datasets.")
383
384
385
386
387
388
389
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
390
391
392
393
394
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

395
396
397
398
399
400
401
402
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
403
404
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
405
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
406
                        help="Whether to run eval on the dev set.")
407
408
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
409
    parser.add_argument("--do_lower_case", action='store_true',
410
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
411

412
413
414
415
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
416
417
418
419
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
420
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
421
                        help="Weight decay if we apply some.")
422
423
424
425
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
426
427
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
428
429
430
431
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
432
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
433
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
434
435
436
437
438
439
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
440

441
442
443
444
445
446
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
447
    parser.add_argument("--no_cuda", action='store_true',
448
                        help="Whether not to use CUDA when available")
449
450
451
452
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
453
    parser.add_argument('--seed', type=int, default=42,
454
                        help="random seed for initialization")
455

thomwolf's avatar
thomwolf committed
456
    parser.add_argument("--local_rank", type=int, default=-1,
457
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
458
459
460
461
462
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
463
464
465
466
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

LysandreJik's avatar
Cleanup  
LysandreJik committed
467
468
469
470
471
    args.predict_file = os.path.join(args.output_dir, 'predictions_{}_{}.txt'.format(
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
        str(args.max_seq_length))
    )

thomwolf's avatar
thomwolf committed
472
473
474
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

475
    # Setup distant debugging if needed
476
477
478
479
480
481
482
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
483
    # Setup CUDA, GPU & distributed training
484
485
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
486
487
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
488
489
490
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
491
492
        args.n_gpu = 1
    args.device = device
493

thomwolf's avatar
thomwolf committed
494
    # Setup logging
495
496
497
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
498
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
499
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
500

501
502
    # Set seed
    set_seed(args)
503

thomwolf's avatar
thomwolf committed
504
    # Load pretrained model and tokenizer
505
    if args.local_rank not in [-1, 0]:
506
507
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

508
    args.model_type = args.model_type.lower()
509
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
510
511
512
513
514
515
516
517
518
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
519
520

    if args.local_rank == 0:
521
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
522

thomwolf's avatar
thomwolf committed
523
    model.to(args.device)
524

525
526
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
527
528
529
530
531
532
533
534
535
536
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
537
    # Training
538
    if args.do_train:
539
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
540
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
541
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
542

543

thomwolf's avatar
thomwolf committed
544
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
545
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
546
547
548
549
550
551
552
553
554
555
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
556
557

        # Good practice: save your training arguments together with the trained model
558
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
559

560
561
        # Load a trained model and vocabulary that you have fine-tuned
        model = model_class.from_pretrained(args.output_dir)
Peng Qi's avatar
Peng Qi committed
562
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
563
564
565
        model.to(args.device)


thomwolf's avatar
thomwolf committed
566
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
567
568
569
570
571
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
572
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
573

574
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
575

576
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
577
            # Reload the model
578
579
580
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
thomwolf's avatar
thomwolf committed
581
582

            # Evaluate
583
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
584

585
586
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
587

588
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
589

590
    return results
591
592
593
594


if __name__ == "__main__":
    main()