run_glue.py 27.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for sequence classification on GLUE (Bert, XLM, XLNet, RoBERTa)."""
thomwolf's avatar
thomwolf committed
17
18
19
20

from __future__ import absolute_import, division, print_function

import argparse
thomwolf's avatar
thomwolf committed
21
import glob
thomwolf's avatar
thomwolf committed
22
23
24
25
26
27
28
29
30
import logging
import os
import random

import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from torch.utils.data.distributed import DistributedSampler
31
32
33
34
35
36

try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

thomwolf's avatar
thomwolf committed
37
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
38

39
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
40
                                  BertForSequenceClassification, BertTokenizer,
41
42
43
                                  RobertaConfig,
                                  RobertaForSequenceClassification,
                                  RobertaTokenizer,
thomwolf's avatar
thomwolf committed
44
45
46
                                  XLMConfig, XLMForSequenceClassification,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForSequenceClassification,
47
48
49
50
                                  XLNetTokenizer,
                                  DistilBertConfig,
                                  DistilBertForSequenceClassification,
                                  DistilBertTokenizer)
thomwolf's avatar
thomwolf committed
51

52
from transformers import AdamW, get_linear_schedule_with_warmup
thomwolf's avatar
thomwolf committed
53

54
55
56
57
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from transformers import glue_convert_examples_to_features as convert_examples_to_features
thomwolf's avatar
thomwolf committed
58
59
60

logger = logging.getLogger(__name__)

Brian Ma's avatar
Brian Ma committed
61
62
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, 
                                                                                RobertaConfig, DistilBertConfig)), ())
63
64

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
65
66
67
    'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer),
68
    'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),
69
    'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
70
}
thomwolf's avatar
thomwolf committed
71

thomwolf's avatar
thomwolf committed
72
73
74
75
76
77
78
79
80

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)


thomwolf's avatar
thomwolf committed
81
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
82
83
84
85
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

thomwolf's avatar
thomwolf committed
86
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
87
88
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
thomwolf's avatar
thomwolf committed
89

thomwolf's avatar
thomwolf committed
90
    if args.max_steps > 0:
thomwolf's avatar
thomwolf committed
91
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
92
93
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
thomwolf's avatar
thomwolf committed
94
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
95

thomwolf's avatar
thomwolf committed
96
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
97
    no_decay = ['bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
98
    optimizer_grouped_parameters = [
thomwolf's avatar
thomwolf committed
99
100
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
101
        ]
thomwolf's avatar
thomwolf committed
102
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
103
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
thomwolf's avatar
thomwolf committed
104
105
    if args.fp16:
        try:
thomwolf's avatar
thomwolf committed
106
            from apex import amp
thomwolf's avatar
thomwolf committed
107
108
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
thomwolf's avatar
thomwolf committed
109
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
thomwolf's avatar
thomwolf committed
110

111
112
113
114
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
115
116
117
118
119
120
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
121
122
    # Train!
    logger.info("***** Running training *****")
123
124
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
thomwolf's avatar
thomwolf committed
125
126
127
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
128
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
thomwolf's avatar
thomwolf committed
129
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
130
131

    global_step = 0
thomwolf's avatar
thomwolf committed
132
    tr_loss, logging_loss = 0.0, 0.0
thomwolf's avatar
thomwolf committed
133
    model.zero_grad()
thomwolf's avatar
thomwolf committed
134
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
thomwolf's avatar
thomwolf committed
135
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
thomwolf's avatar
thomwolf committed
136
137
138
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
thomwolf's avatar
thomwolf committed
139
            model.train()
thomwolf's avatar
thomwolf committed
140
            batch = tuple(t.to(args.device) for t in batch)
141
142
143
            inputs = {'input_ids':      batch[0],
                      'attention_mask': batch[1],
                      'labels':         batch[3]}
144
145
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
Peiqin Lin's avatar
typos  
Peiqin Lin committed
146
            outputs = model(**inputs)
147
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
148
149
150
151
152
153

            if args.n_gpu > 1:
                loss = loss.mean() # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

thomwolf's avatar
thomwolf committed
154
155
156
157
158
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
thomwolf's avatar
thomwolf committed
159
160

            tr_loss += loss.item()
161
            if (step + 1) % args.gradient_accumulation_steps == 0:
162
163
164
165
166
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

thomwolf's avatar
thomwolf committed
167
                optimizer.step()
thomwolf's avatar
thomwolf committed
168
                scheduler.step()  # Update learning rate schedule
thomwolf's avatar
thomwolf committed
169
                model.zero_grad()
thomwolf's avatar
thomwolf committed
170
                global_step += 1
thomwolf's avatar
thomwolf committed
171

thomwolf's avatar
thomwolf committed
172
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
thomwolf's avatar
thomwolf committed
173
                    # Log metrics
thomwolf's avatar
thomwolf committed
174
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
thomwolf's avatar
thomwolf committed
175
                        results = evaluate(args, model, tokenizer)
thomwolf's avatar
thomwolf committed
176
177
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
thomwolf's avatar
thomwolf committed
178
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
thomwolf's avatar
thomwolf committed
179
180
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss
thomwolf's avatar
thomwolf committed
181
182
183
184
185
186
187
188
189

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
190
                    logger.info("Saving model checkpoint to %s", output_dir)
thomwolf's avatar
thomwolf committed
191

thomwolf's avatar
thomwolf committed
192
            if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
193
                epoch_iterator.close()
thomwolf's avatar
thomwolf committed
194
195
                break
        if args.max_steps > 0 and global_step > args.max_steps:
thomwolf's avatar
thomwolf committed
196
            train_iterator.close()
thomwolf's avatar
thomwolf committed
197
            break
thomwolf's avatar
thomwolf committed
198

thomwolf's avatar
thomwolf committed
199
200
201
    if args.local_rank in [-1, 0]:
        tb_writer.close()

thomwolf's avatar
thomwolf committed
202
203
204
    return global_step, tr_loss / global_step


thomwolf's avatar
thomwolf committed
205
def evaluate(args, model, tokenizer, prefix=""):
thomwolf's avatar
thomwolf committed
206
207
208
209
210
211
212
213
214
215
216
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True)

        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

thomwolf's avatar
thomwolf committed
217
        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
218
219
220
221
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
222
223
224
225
        # multi-gpu eval
        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
226
        # Eval!
thomwolf's avatar
thomwolf committed
227
        logger.info("***** Running evaluation {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
228
229
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
thomwolf's avatar
thomwolf committed
230
        eval_loss = 0.0
thomwolf's avatar
thomwolf committed
231
232
233
234
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        for batch in tqdm(eval_dataloader, desc="Evaluating"):
thomwolf's avatar
thomwolf committed
235
            model.eval()
thomwolf's avatar
thomwolf committed
236
237
238
239
240
241
            batch = tuple(t.to(args.device) for t in batch)

            with torch.no_grad():
                inputs = {'input_ids':      batch[0],
                          'attention_mask': batch[1],
                          'labels':         batch[3]}
242
243
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
thomwolf's avatar
thomwolf committed
244
245
246
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]

thomwolf's avatar
thomwolf committed
247
                eval_loss += tmp_eval_loss.mean().item()
thomwolf's avatar
thomwolf committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)

        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)

264
        output_eval_file = os.path.join(eval_output_dir, prefix, "eval_results.txt")
thomwolf's avatar
thomwolf committed
265
        with open(output_eval_file, "w") as writer:
thomwolf's avatar
thomwolf committed
266
            logger.info("***** Eval results {} *****".format(prefix))
thomwolf's avatar
thomwolf committed
267
268
269
270
271
272
273
            for key in sorted(result.keys()):
                logger.info("  %s = %s", key, str(result[key]))
                writer.write("%s = %s\n" % (key, str(result[key])))

    return results


thomwolf's avatar
thomwolf committed
274
def load_and_cache_examples(args, task, tokenizer, evaluate=False):
VictorSanh's avatar
VictorSanh committed
275
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
276
277
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

thomwolf's avatar
thomwolf committed
278
    processor = processors[task]()
279
280
281
282
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format(
        'dev' if evaluate else 'train',
283
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
thomwolf's avatar
thomwolf committed
284
285
        str(args.max_seq_length),
        str(task)))
286
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
thomwolf's avatar
thomwolf committed
287
        logger.info("Loading features from cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
288
289
        features = torch.load(cached_features_file)
    else:
290
291
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
292
293
294
        if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1] 
295
        examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
thomwolf's avatar
thomwolf committed
296
297
        features = convert_examples_to_features(examples,
                                                tokenizer,
thomwolf's avatar
thomwolf committed
298
299
300
                                                label_list=label_list,
                                                max_length=args.max_seq_length,
                                                output_mode=output_mode,
thomwolf's avatar
thomwolf committed
301
302
303
                                                pad_on_left=bool(args.model_type in ['xlnet']),                 # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
304
        )
305
        if args.local_rank in [-1, 0]:
thomwolf's avatar
thomwolf committed
306
            logger.info("Saving features into cached file %s", cached_features_file)
thomwolf's avatar
thomwolf committed
307
308
            torch.save(features, cached_features_file)

VictorSanh's avatar
VictorSanh committed
309
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
310
311
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

312
313
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
314
315
    all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
316
    if output_mode == "classification":
thomwolf's avatar
thomwolf committed
317
        all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
318
    elif output_mode == "regression":
thomwolf's avatar
thomwolf committed
319
        all_labels = torch.tensor([f.label for f in features], dtype=torch.float)
320

thomwolf's avatar
thomwolf committed
321
    dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_labels)
322
    return dataset
thomwolf's avatar
thomwolf committed
323
324


thomwolf's avatar
thomwolf committed
325
326
327
328
329
330
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
331
332
333
334
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
thomwolf's avatar
thomwolf committed
335
    parser.add_argument("--task_name", default=None, type=str, required=True,
336
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
thomwolf's avatar
thomwolf committed
337
338
339
340
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")

    ## Other parameters
thomwolf's avatar
thomwolf committed
341
342
343
344
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
thomwolf's avatar
thomwolf committed
345
346
347
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=128, type=int,
348
349
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
thomwolf's avatar
thomwolf committed
350
351
352
353
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
thomwolf's avatar
thomwolf committed
354
355
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
356
357
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
358
359

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
360
                        help="Batch size per GPU/CPU for training.")
thomwolf's avatar
thomwolf committed
361
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
362
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
363
364
365
366
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
thomwolf's avatar
thomwolf committed
367
368
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
thomwolf's avatar
thomwolf committed
369
370
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
thomwolf's avatar
thomwolf committed
371
372
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
thomwolf's avatar
thomwolf committed
373
374
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
thomwolf's avatar
thomwolf committed
375
376
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
thomwolf's avatar
thomwolf committed
377
378
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
thomwolf's avatar
thomwolf committed
379

thomwolf's avatar
thomwolf committed
380
    parser.add_argument('--logging_steps', type=int, default=50,
thomwolf's avatar
thomwolf committed
381
                        help="Log every X updates steps.")
thomwolf's avatar
thomwolf committed
382
383
384
385
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
386
387
388
389
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
thomwolf's avatar
thomwolf committed
390
391
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
392
393
394
395
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
thomwolf's avatar
thomwolf committed
396
397
398
399
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
thomwolf's avatar
thomwolf committed
400
    parser.add_argument("--local_rank", type=int, default=-1,
thomwolf's avatar
thomwolf committed
401
402
403
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
thomwolf's avatar
thomwolf committed
404
405
    args = parser.parse_args()

thomwolf's avatar
thomwolf committed
406
407
408
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417
418
419
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
420
        args.n_gpu = torch.cuda.device_count()
thomwolf's avatar
thomwolf committed
421
422
423
424
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
425
        args.n_gpu = 1
thomwolf's avatar
thomwolf committed
426
427
428
    args.device = device

    # Setup logging
thomwolf's avatar
thomwolf committed
429
430
431
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
432
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
thomwolf's avatar
thomwolf committed
433
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
thomwolf's avatar
thomwolf committed
434

thomwolf's avatar
thomwolf committed
435
436
    # Set seed
    set_seed(args)
thomwolf's avatar
thomwolf committed
437
438

    # Prepare GLUE task
thomwolf's avatar
thomwolf committed
439
440
441
442
443
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
thomwolf's avatar
thomwolf committed
444
445
446
447
448
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
449
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
450

451
    args.model_type = args.model_type.lower()
thomwolf's avatar
thomwolf committed
452
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
453
454
455
456
457
458
459
460
461
462
463
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
thomwolf's avatar
thomwolf committed
464
465

    if args.local_rank == 0:
466
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
thomwolf's avatar
thomwolf committed
467

thomwolf's avatar
thomwolf committed
468
    model.to(args.device)
thomwolf's avatar
thomwolf committed
469

thomwolf's avatar
thomwolf committed
470
471
    logger.info("Training/evaluation parameters %s", args)

472

thomwolf's avatar
thomwolf committed
473
    # Training
thomwolf's avatar
thomwolf committed
474
    if args.do_train:
475
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False)
thomwolf's avatar
thomwolf committed
476
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
thomwolf's avatar
thomwolf committed
477
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
thomwolf's avatar
thomwolf committed
478
479


thomwolf's avatar
thomwolf committed
480
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
481
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
482
483
484
485
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

thomwolf's avatar
thomwolf committed
486
        logger.info("Saving model checkpoint to %s", args.output_dir)
487
488
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
thomwolf's avatar
thomwolf committed
489
490
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
491
        tokenizer.save_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
492
493

        # Good practice: save your training arguments together with the trained model
494
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
thomwolf's avatar
thomwolf committed
495

496
        # Load a trained model and vocabulary that you have fine-tuned
497
        model = model_class.from_pretrained(args.output_dir)
thomwolf's avatar
thomwolf committed
498
        tokenizer = tokenizer_class.from_pretrained(args.output_dir)
499
        model.to(args.device)
thomwolf's avatar
thomwolf committed
500

501

thomwolf's avatar
thomwolf committed
502
    # Evaluation
thomwolf's avatar
thomwolf committed
503
    results = {}
thomwolf's avatar
thomwolf committed
504
    if args.do_eval and args.local_rank in [-1, 0]:
505
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
thomwolf's avatar
thomwolf committed
506
        checkpoints = [args.output_dir]
thomwolf's avatar
thomwolf committed
507
        if args.eval_all_checkpoints:
thomwolf's avatar
thomwolf committed
508
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
509
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce logging
thomwolf's avatar
thomwolf committed
510
511
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
512
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
513
514
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            
thomwolf's avatar
thomwolf committed
515
            model = model_class.from_pretrained(checkpoint)
thomwolf's avatar
thomwolf committed
516
            model.to(args.device)
517
            result = evaluate(args, model, tokenizer, prefix=prefix)
thomwolf's avatar
thomwolf committed
518
519
520
            result = dict((k + '_{}'.format(global_step), v) for k, v in result.items())
            results.update(result)

thomwolf's avatar
thomwolf committed
521
    return results
thomwolf's avatar
thomwolf committed
522
523
524
525


if __name__ == "__main__":
    main()