run_squad.py 29.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
20
from transformers.data.metrics.squad_metrics import compute_predictions_logits, compute_predictions_log_probs, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
import numpy as np
import torch
LysandreJik's avatar
Cleanup  
LysandreJik committed
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
31
32
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
                                  XLNetTokenizer,
Lysandre's avatar
Lysandre committed
46
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
47
48
49
                                  AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering, XLMTokenizer,
                                  )
thomwolf's avatar
thomwolf committed
50

Lysandre's avatar
Lysandre committed
51
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
52
53
54

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
55
56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
57
58

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
59
60
61
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
Lysandre's avatar
Lysandre committed
62
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
63
64
    'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer)
thomwolf's avatar
thomwolf committed
65
66
}

thomwolf's avatar
thomwolf committed
67
68
69
70
71
72
73
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

74
75
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
76

77
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
78
79
80
81
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

82
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
83
84
85
86
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
87
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
88
89
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
90
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
91

92
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
93
94
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
95
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
96
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
LysandreJik's avatar
Cleanup  
LysandreJik committed
97
    ]
98
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
99
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
LysandreJik's avatar
Cleanup  
LysandreJik committed
100

thomwolf's avatar
thomwolf committed
101
102
103
104
105
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
106
        
thomwolf's avatar
thomwolf committed
107
108
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

109
110
111
112
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
119
120
121
122
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
123
124
125
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
126
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
127
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
128

Lysandre's avatar
Lysandre committed
129
    global_step = 1
thomwolf's avatar
thomwolf committed
130
    tr_loss, logging_loss = 0.0, 0.0
131
132
133
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
LysandreJik's avatar
Cleanup  
LysandreJik committed
134
    
135
136
137
138
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
139
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
140
141
142
143
144
145
146
147

            inputs = {
                'input_ids':       batch[0],
                'attention_mask':  batch[1],
                'start_positions': batch[3],
                'end_positions':   batch[4]
            }

148
149
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
150

151
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
152
153
                inputs.update({'cls_index': batch[5], 'p_mask': batch[6]})

Peiqin Lin's avatar
typos  
Peiqin Lin committed
154
            outputs = model(**inputs)
155
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
156

157
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
158
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
159
160
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
161

162
163
164
165
166
167
168
169
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
170
171
172
173
174
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

175
                optimizer.step()
176
                scheduler.step()  # Update learning rate schedule
177
178
179
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
180
                # Log metrics
181
182
183
184
185
186
187
188
189
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
190
                # Save model checkpoint
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
207
208
209
    if args.local_rank in [-1, 0]:
        tb_writer.close()

210
211
212
213
214
215
216
217
218
219
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
220

221
    # Note that DistributedSampler samples randomly
222
    eval_sampler = SequentialSampler(dataset)
223
224
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
225
226
227
228
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

229
230
231
232
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
233

234
    all_results = []
235
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
236

237
238
239
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
240

241
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
242
243
244
245
246
            inputs = {
                'input_ids':      batch[0],
                'attention_mask': batch[1]
            }
            
247
248
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
LysandreJik's avatar
Cleanup  
LysandreJik committed
249

250
            example_indices = batch[3]
LysandreJik's avatar
Cleanup  
LysandreJik committed
251
252
            
            # XLNet and XLM use more arguments for their predictions
253
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
254
255
                inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})

256
257
258
259
260
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
261

LysandreJik's avatar
LysandreJik committed
262
263
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
264
265
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
266
267
268
269
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
270
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                cls_logits = output[4]

                result = SquadResult(
                    unique_id, start_logits, end_logits, 
                    start_top_index=start_top_index, 
                    end_top_index=end_top_index, 
                    cls_logits=cls_logits
                )

            else:
                start_logits, end_logits = output
                result = SquadResult(
                    unique_id, start_logits, end_logits
                )

286
            all_results.append(result)
287

288
289
290
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
291
    # Compute predictions
292
293
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
294

295
296
297
298
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
299

LysandreJik's avatar
Cleanup  
LysandreJik committed
300
    # XLNet and XLM use a more complex post-processing procedure
301
    if args.model_type in ['xlnet', 'xlm']:
302
        predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
303
                        args.max_answer_length, output_prediction_file,
LysandreJik's avatar
Cleanup  
LysandreJik committed
304
                        output_nbest_file, output_null_log_odds_file,
305
306
                        model.config.start_n_top, model.config.end_n_top,
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
307
    else:
308
        predictions = compute_predictions_logits(examples, features, all_results, args.n_best_size,
309
310
311
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
312

LysandreJik's avatar
Cleanup  
LysandreJik committed
313
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
314
    results = squad_evaluate(examples, predictions)
315
316
317
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
318
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
319
320
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

321
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
322
323
    input_dir = args.data_dir if args.data_dir else "."
    cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
324
        'dev' if evaluate else 'train',
325
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
LysandreJik's avatar
Cleanup  
LysandreJik committed
326
327
328
329
        str(args.max_seq_length))
    )

    # Init features and dataset from cache if it exists
330
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
331
        logger.info("Loading features from cached file %s", cached_features_file)
332
333
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
334
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
335
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
336

LysandreJik's avatar
Cleanup  
LysandreJik committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        if not args.data_dir:
            try:
                import tensorflow_datasets as tfds
            except ImportError:
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")

            if args.version_2_with_negative:
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")

            tfds_examples = tfds.load("squad")
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
            examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
LysandreJik's avatar
LysandreJik committed
351

352
        features, dataset = squad_convert_examples_to_features( 
Lysandre's avatar
Lysandre committed
353
354
355
356
357
358
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
359
            return_dataset='pt'
Lysandre's avatar
Lysandre committed
360
361
        )

thomwolf's avatar
thomwolf committed
362
363
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
364
            torch.save({"features": features, "dataset": dataset}, cached_features_file)
thomwolf's avatar
thomwolf committed
365

VictorSanh's avatar
VictorSanh committed
366
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
367
368
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

369
370
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
371
372
    return dataset

373
374
375
376
377

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
378
379
380
381
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
382
383
384
385
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
LysandreJik's avatar
Cleanup  
LysandreJik committed
386
387
    parser.add_argument("--data_dir", default=None, type=str,
                        help="The input data dir. Should contain the .json files for the task. If not specified, will run with tensorflow_datasets.")
388
389
390
391
392
393
394
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
395
396
397
398
399
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

400
401
402
403
404
405
406
407
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
408
409
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
410
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
411
                        help="Whether to run eval on the dev set.")
412
413
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
414
    parser.add_argument("--do_lower_case", action='store_true',
415
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
416

417
418
419
420
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
421
422
423
424
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
425
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
426
                        help="Weight decay if we apply some.")
427
428
429
430
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
431
432
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
433
434
435
436
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
437
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
438
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
439
440
441
442
443
444
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
445

446
447
448
449
450
451
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
452
    parser.add_argument("--no_cuda", action='store_true',
453
                        help="Whether not to use CUDA when available")
454
455
456
457
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
458
    parser.add_argument('--seed', type=int, default=42,
459
                        help="random seed for initialization")
460

thomwolf's avatar
thomwolf committed
461
    parser.add_argument("--local_rank", type=int, default=-1,
462
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
463
464
465
466
467
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
468
469
470
471
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

LysandreJik's avatar
Cleanup  
LysandreJik committed
472
473
474
475
476
    args.predict_file = os.path.join(args.output_dir, 'predictions_{}_{}.txt'.format(
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
        str(args.max_seq_length))
    )

thomwolf's avatar
thomwolf committed
477
478
479
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

480
    # Setup distant debugging if needed
481
482
483
484
485
486
487
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
488
    # Setup CUDA, GPU & distributed training
489
490
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
491
492
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
493
494
495
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
496
497
        args.n_gpu = 1
    args.device = device
498

thomwolf's avatar
thomwolf committed
499
    # Setup logging
500
501
502
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
503
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
504
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
505

506
507
    # Set seed
    set_seed(args)
508

thomwolf's avatar
thomwolf committed
509
    # Load pretrained model and tokenizer
510
    if args.local_rank not in [-1, 0]:
511
512
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

513
    args.model_type = args.model_type.lower()
514
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
515
516
517
518
519
520
521
522
523
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
524
525

    if args.local_rank == 0:
526
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
527

thomwolf's avatar
thomwolf committed
528
    model.to(args.device)
529

530
531
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
532
533
534
535
536
537
538
539
540
541
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
542
    # Training
543
    if args.do_train:
544
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
545
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
546
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
547

548

thomwolf's avatar
thomwolf committed
549
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
550
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
551
552
553
554
555
556
557
558
559
560
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
561
562

        # Good practice: save your training arguments together with the trained model
563
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
564

565
        # Load a trained model and vocabulary that you have fine-tuned
Lysandre's avatar
Lysandre committed
566
        model = model_class.from_pretrained(args.output_dir, force_download=True)
Peng Qi's avatar
Peng Qi committed
567
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
568
569
570
        model.to(args.device)


thomwolf's avatar
thomwolf committed
571
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
572
573
574
575
576
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
577
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
578

579
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
580

581
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
582
            # Reload the model
583
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
Lysandre's avatar
Lysandre committed
584
            model = model_class.from_pretrained(checkpoint, force_download=True)
585
            model.to(args.device)
thomwolf's avatar
thomwolf committed
586
587

            # Evaluate
588
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
589

590
591
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
592

593
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
594

595
    return results
596
597
598
599


if __name__ == "__main__":
    main()