check_repo.py 28.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
19
import importlib
import inspect
import os
import re
20
import warnings
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
25
from transformers import is_flax_available, is_tf_available, is_torch_available
from transformers.file_utils import ENV_VARS_TRUE_VALUES
26
27
from transformers.models.auto import get_values

28
29
30
31
32

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
33
PATH_TO_DOC = "docs/source"
34

35
36
37
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
    "DPRSpanPredictor",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
38
    "RealmBertModel",
39
40
41
42
    "T5Stack",
    "TFDPRSpanPredictor",
]

43
44
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
45
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
46
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
47
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
48
49
50
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
51
52
53
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
54
55
56
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
57
58
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
59
60
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
61
62
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
63
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
64
    "BartEncoder",  # Building part of bigger (tested) model.
65
    "BertLMHeadModel",  # Needs to be setup as decoder.
66
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
67
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
68
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
69
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
70
    "MBartEncoder",  # Building part of bigger (tested) model.
71
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
72
73
74
75
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
76
    "PegasusEncoder",  # Building part of bigger (tested) model.
77
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
78
    "DPREncoder",  # Building part of bigger (tested) model.
79
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
80
81
82
83
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
84
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
85
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
86
    "TFDPREncoder",  # Building part of bigger (tested) model.
87
88
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
89
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
90
    "SeparableConv1D",  # Building part of bigger (tested) model.
91
92
93
94
95
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
96
97
98
99
100
101
102
103
104
105
106
107
    "camembert/test_modeling_camembert.py",
    "mt5/test_modeling_flax_mt5.py",
    "mbart/test_modeling_mbart.py",
    "mt5/test_modeling_mt5.py",
    "pegasus/test_modeling_pegasus.py",
    "camembert/test_modeling_tf_camembert.py",
    "mt5/test_modeling_tf_mt5.py",
    "xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "xlm_roberta/test_modeling_xlm_roberta.py",
    "vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
    "vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
108
109
]

110
111
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
112
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
113
    # models to ignore for model xxx mapping
NielsRogge's avatar
NielsRogge committed
114
115
116
117
    "ViltForQuestionAnswering",
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
118
119
120
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
121
122
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
123
    "SegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
124
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
125
126
127
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
128
    "BeitForMaskedImageModeling",
Suraj Patil's avatar
Suraj Patil committed
129
130
    "CLIPTextModel",
    "CLIPVisionModel",
Yih-Dar's avatar
Yih-Dar committed
131
132
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
133
134
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
135
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
136
    "DetrForSegmentation",
137
138
139
    "DPRReader",
    "FlaubertForQuestionAnswering",
    "GPT2DoubleHeadsModel",
Ryokan RI's avatar
Ryokan RI committed
140
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
141
142
143
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
144
145
146
147
    "OpenAIGPTDoubleHeadsModel",
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
148
149
150
151
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
152
    "TFDPRReader",
153
154
    "TFGPT2DoubleHeadsModel",
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
155
156
157
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
158
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
159
    "HubertForCTC",
160
161
    "SEWForCTC",
    "SEWDForCTC",
162
163
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
164
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
165
166
167
168
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
169
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
170
    "TFHubertForCTC",
171
172
]

173
174
175
176
177
178
179
180
181
# This is to make sure the transformers module imported is the one in the repo.
spec = importlib.util.spec_from_file_location(
    "transformers",
    os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"),
    submodule_search_locations=[PATH_TO_TRANSFORMERS],
)
transformers = spec.loader.load_module()


182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

    missing_models = sorted(list(set(_models).difference(models)))
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


202
203
204
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
205
    """Get the model modules inside the transformers library."""
206
207
208
209
210
211
212
213
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
214
        "modeling_flax_auto",
215
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
216
        "modeling_flax_utils",
217
        "modeling_speech_encoder_decoder",
218
        "modeling_flax_speech_encoder_decoder",
219
        "modeling_flax_vision_encoder_decoder",
220
221
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
222
        "modeling_tf_encoder_decoder",
223
224
225
226
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
227
        "modeling_tf_vision_encoder_decoder",
228
        "modeling_vision_encoder_decoder",
229
230
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
231
232
233
234
235
236
237
238
239
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
240
241
242
    return modules


243
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
244
    """Get the objects in module that are models."""
245
    models = []
246
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
247
    for attr_name in dir(module):
248
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
249
250
251
252
253
254
255
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


286
287
288
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Patrick von Platen's avatar
Patrick von Platen committed
289
    """Get the model test files."""
290
291
292
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
293
        "test_modeling_flax_encoder_decoder",
294
        "test_modeling_flax_speech_encoder_decoder",
295
296
        "test_modeling_marian",
        "test_modeling_tf_common",
297
        "test_modeling_tf_encoder_decoder",
298
299
    ]
    test_files = []
300
301
302
303
304
305
306
307
308
309
310
311
312
313
    for file_or_dir in os.listdir(PATH_TO_TESTS):
        path = os.path.join(PATH_TO_TESTS, file_or_dir)
        if os.path.isdir(path):
            filenames = [os.path.join(file_or_dir, file) for file in os.listdir(path)]
        else:
            filenames = [file_or_dir]

        for filename in filenames:
            if (
                os.path.isfile(os.path.join(PATH_TO_TESTS, filename))
                and "test_modeling" in filename
                and not os.path.splitext(filename)[0] in _ignore_files
            ):
                test_files.append(filename)
314
315
316
317
318
319
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
320
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
321
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
322
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
323
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
324
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
325
326
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
327
    if len(all_models) > 0:
328
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
329
330
331
332
333
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
334
335
336
337
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
338
    """Check models defined in module are tested in test_file."""
339
    # XxxPreTrainedModel are not tested
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
        if test_file in TEST_FILES_WITH_NO_COMMON_TESTS:
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
363
    """Check all models are properly tested."""
364
365
366
367
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
368
369
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
370
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
371
372
373
374
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
375
376
377
378
379
380
381
        new_failures = check_models_are_tested(module, test_file)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


382
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
383
    """Return the list of all models in at least one auto class."""
384
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
385
386
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
387
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
388
389
390
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
391
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
392
393
394
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
395
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
396
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
397
    return [cls for cls in result]
398
399


400
401
402
403
404
405
406
407
408
409
410
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


411
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
412
    """Check models defined in module are each in an auto class."""
413
414
415
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
416
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
417
418
419
420
421
422
423
424
425
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
426
    """Check all models are each in an auto class."""
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full quality checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )
448
449
450
451
452
453
454
455
456
457
458
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
459
460
461
462
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
463
    """Check that in the test file `filename` the slow decorator is always last."""
464
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
481
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
482
483
484
485
486
487
488
489
490
491
492
493
494
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
            f"The parameterized decorator (and its variants) should always be first, but this is not the case in the following files:\n{msg}"
        )


495
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
496
    """Parse the content of all doc files to detect which classes and functions it documents"""
497
498
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
499
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
500
501
502
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
503
504
505
506
507
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
508
509
510
511
512
513
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
514
    "BartPretrainedModel",
515
516
    "DataCollator",
    "DataCollatorForSOP",
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
532
    "TFBartPretrainedModel",
533
534
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
535
    "Wav2Vec2ForMaskedLM",
536
    "Wav2Vec2Tokenizer",
537
538
539
540
541
542
543
544
545
546
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
547
548
    "TFTrainer",
    "TFTrainingArguments",
549
550
551
552
553
554
555
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
556
    "CharacterTokenizer",  # Internal, should never have been in the main init.
557
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
558
    "DummyObject",  # Just picked by mistake sometimes.
559
    "MecabTokenizer",  # Internal, should never have been in the main init.
560
561
562
563
564
565
566
567
568
569
570
571
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "cached_path",  # Internal used for downloading models.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
572
    "requires_backends",  # Internal function
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
624
    """Check all models are properly documented."""
625
    documented_objs = find_all_documented_objects()
626
627
628
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
629
630
631
632
633
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
634
    check_docstrings_are_in_md()
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
        with open(file, "r") as f:
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
703
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
704
705
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
706
707


708
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
709
    """Check all models are properly tested and documented."""
710
711
    print("Checking all models are included.")
    check_model_list()
712
713
    print("Checking all models are public.")
    check_models_are_in_init()
714
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
715
    check_all_decorator_order()
716
    check_all_models_are_tested()
717
    print("Checking all objects are properly documented.")
718
    check_all_objects_are_documented()
719
720
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
721
722
723
724


if __name__ == "__main__":
    check_repo_quality()