run_squad.py 30 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
""" Finetuning the library models for question-answering on SQuAD (DistilBERT, Bert, XLM, XLNet)."""
17
18

from __future__ import absolute_import, division, print_function
LysandreJik's avatar
LysandreJik committed
19
from transformers.data.processors.squad import SquadV1Processor, SquadV2Processor, SquadResult
20
from transformers.data.metrics.squad_metrics import compute_predictions_logits, compute_predictions_log_probs, squad_evaluate
21
22
23
24
25

import argparse
import logging
import os
import random
thomwolf's avatar
thomwolf committed
26
import glob
27
import timeit
28
29
import numpy as np
import torch
LysandreJik's avatar
Cleanup  
LysandreJik committed
30
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, TensorDataset)
31
32
from torch.utils.data.distributed import DistributedSampler

33
34
35
36
37
38
try:
    from torch.utils.tensorboard import SummaryWriter
except:
    from tensorboardX import SummaryWriter

from tqdm import tqdm, trange
39

40
from transformers import (WEIGHTS_NAME, BertConfig,
thomwolf's avatar
thomwolf committed
41
42
43
44
                                  BertForQuestionAnswering, BertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering,
                                  XLMTokenizer, XLNetConfig,
                                  XLNetForQuestionAnswering,
45
                                  XLNetTokenizer,
Lysandre's avatar
Lysandre committed
46
                                  DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer,
47
48
49
                                  AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer,
                                  XLMConfig, XLMForQuestionAnswering, XLMTokenizer,
                                  )
thomwolf's avatar
thomwolf committed
50

Lysandre's avatar
Lysandre committed
51
from transformers import AdamW, get_linear_schedule_with_warmup, squad_convert_examples_to_features
52
53
54

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
55
56
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) \
                  for conf in (BertConfig, XLNetConfig, XLMConfig)), ())
thomwolf's avatar
thomwolf committed
57
58

MODEL_CLASSES = {
thomwolf's avatar
thomwolf committed
59
60
61
    'bert': (BertConfig, BertForQuestionAnswering, BertTokenizer),
    'xlnet': (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer),
Lysandre's avatar
Lysandre committed
62
    'distilbert': (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer),
63
64
    'albert': (AlbertConfig, AlbertForQuestionAnswering, AlbertTokenizer),
    'xlm': (XLMConfig, XLMForQuestionAnswering, XLMTokenizer)
thomwolf's avatar
thomwolf committed
65
66
}

thomwolf's avatar
thomwolf committed
67
68
69
70
71
72
73
def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

74
75
def to_list(tensor):
    return tensor.detach().cpu().tolist()
thomwolf's avatar
thomwolf committed
76

77
def train(args, train_dataset, model, tokenizer):
thomwolf's avatar
thomwolf committed
78
79
80
81
    """ Train the model """
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

82
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
thomwolf's avatar
thomwolf committed
83
84
85
86
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
87
        t_total = args.max_steps
thomwolf's avatar
thomwolf committed
88
89
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
90
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
thomwolf's avatar
thomwolf committed
91

92
    # Prepare optimizer and schedule (linear warmup and decay)
thomwolf's avatar
thomwolf committed
93
94
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
95
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
thomwolf's avatar
thomwolf committed
96
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
LysandreJik's avatar
Cleanup  
LysandreJik committed
97
    ]
98
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
99
    scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
LysandreJik's avatar
Cleanup  
LysandreJik committed
100

thomwolf's avatar
thomwolf committed
101
102
103
104
105
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
LysandreJik's avatar
Cleanup  
LysandreJik committed
106
        
thomwolf's avatar
thomwolf committed
107
108
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

109
110
111
112
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
113
114
115
116
117
118
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
                                                          output_device=args.local_rank,
                                                          find_unused_parameters=True)

thomwolf's avatar
thomwolf committed
119
120
121
122
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
123
124
125
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",
                   args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
thomwolf's avatar
thomwolf committed
126
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
127
    logger.info("  Total optimization steps = %d", t_total)
thomwolf's avatar
thomwolf committed
128

Lysandre's avatar
Lysandre committed
129
    global_step = 1
thomwolf's avatar
thomwolf committed
130
    tr_loss, logging_loss = 0.0, 0.0
131
132
133
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
    set_seed(args)  # Added here for reproductibility (even between python 2 and 3)
LysandreJik's avatar
Cleanup  
LysandreJik committed
134
    
135
136
137
138
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
thomwolf's avatar
thomwolf committed
139
            batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
140
141
142
143
144
145
146
147

            inputs = {
                'input_ids':       batch[0],
                'attention_mask':  batch[1],
                'start_positions': batch[3],
                'end_positions':   batch[4]
            }

148
149
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
150

151
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
152
153
                inputs.update({'cls_index': batch[5], 'p_mask': batch[6]})

Peiqin Lin's avatar
typos  
Peiqin Lin committed
154
            outputs = model(**inputs)
155
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
thomwolf's avatar
thomwolf committed
156

157
            if args.n_gpu > 1:
thomwolf's avatar
thomwolf committed
158
                loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training
159
160
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
thomwolf's avatar
thomwolf committed
161

162
163
164
165
166
167
168
169
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
170
171
172
173
174
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

175
                optimizer.step()
176
                scheduler.step()  # Update learning rate schedule
177
178
179
                model.zero_grad()
                global_step += 1

LysandreJik's avatar
Cleanup  
LysandreJik committed
180
                # Log metrics
181
182
183
184
185
186
187
188
189
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average well
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
                            tb_writer.add_scalar('eval_{}'.format(key), value, global_step)
                    tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step)
                    logging_loss = tr_loss

LysandreJik's avatar
Cleanup  
LysandreJik committed
190
                # Save model checkpoint
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

thomwolf's avatar
thomwolf committed
207
208
209
    if args.local_rank in [-1, 0]:
        tb_writer.close()

210
211
212
213
214
215
216
217
218
219
    return global_step, tr_loss / global_step


def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
LysandreJik's avatar
Cleanup  
LysandreJik committed
220

221
    # Note that DistributedSampler samples randomly
222
    eval_sampler = SequentialSampler(dataset)
223
224
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

ronakice's avatar
ronakice committed
225
226
227
228
    # multi-gpu evaluate
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

229
230
231
232
    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
LysandreJik's avatar
Cleanup  
LysandreJik committed
233

234
    all_results = []
235
    start_time = timeit.default_timer()
LysandreJik's avatar
Cleanup  
LysandreJik committed
236

237
238
239
    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
LysandreJik's avatar
Cleanup  
LysandreJik committed
240

241
        with torch.no_grad():
LysandreJik's avatar
LysandreJik committed
242
243
244
245
246
            inputs = {
                'input_ids':      batch[0],
                'attention_mask': batch[1]
            }
            
247
248
            if args.model_type != 'distilbert':
                inputs['token_type_ids'] = None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
LysandreJik's avatar
Cleanup  
LysandreJik committed
249

250
            example_indices = batch[3]
LysandreJik's avatar
Cleanup  
LysandreJik committed
251
252
            
            # XLNet and XLM use more arguments for their predictions
253
            if args.model_type in ['xlnet', 'xlm']:
LysandreJik's avatar
Cleanup  
LysandreJik committed
254
255
                inputs.update({'cls_index': batch[4], 'p_mask': batch[5]})

256
257
258
259
260
            outputs = model(**inputs)

        for i, example_index in enumerate(example_indices):
            eval_feature = features[example_index.item()]
            unique_id = int(eval_feature.unique_id)
LysandreJik's avatar
LysandreJik committed
261

LysandreJik's avatar
LysandreJik committed
262
263
            output = [to_list(output[i]) for output in outputs]

LysandreJik's avatar
Cleanup  
LysandreJik committed
264
265
            # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler"
            # models only use two.
LysandreJik's avatar
LysandreJik committed
266
267
268
269
            if len(output) >= 5:
                start_logits = output[0]
                start_top_index = output[1]
                end_logits = output[2]
LysandreJik's avatar
Cleanup  
LysandreJik committed
270
                end_top_index = output[3]
LysandreJik's avatar
LysandreJik committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                cls_logits = output[4]

                result = SquadResult(
                    unique_id, start_logits, end_logits, 
                    start_top_index=start_top_index, 
                    end_top_index=end_top_index, 
                    cls_logits=cls_logits
                )

            else:
                start_logits, end_logits = output
                result = SquadResult(
                    unique_id, start_logits, end_logits
                )

286
            all_results.append(result)
287

288
289
290
    evalTime = timeit.default_timer() - start_time
    logger.info("  Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset))

thomwolf's avatar
thomwolf committed
291
    # Compute predictions
292
293
    output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix))
    output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix))
LysandreJik's avatar
Cleanup  
LysandreJik committed
294

295
296
297
298
    if args.version_2_with_negative:
        output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix))
    else:
        output_null_log_odds_file = None
299

LysandreJik's avatar
Cleanup  
LysandreJik committed
300
    # XLNet and XLM use a more complex post-processing procedure
301
    if args.model_type in ['xlnet', 'xlm']:
Lysandre's avatar
Lysandre committed
302
303
304
305

        start_n_top = model.config.start_n_top if hasattr(model, "config") else model.module.config.start_n_top
        end_n_top = model.config.end_n_top if hasattr(model, "config") else model.module.config.end_n_top

306
        predictions = compute_predictions_log_probs(examples, features, all_results, args.n_best_size,
307
                        args.max_answer_length, output_prediction_file,
LysandreJik's avatar
Cleanup  
LysandreJik committed
308
                        output_nbest_file, output_null_log_odds_file,
Lysandre's avatar
Lysandre committed
309
                        start_n_top, end_n_top,
310
                        args.version_2_with_negative, tokenizer, args.verbose_logging)
311
    else:
312
        predictions = compute_predictions_logits(examples, features, all_results, args.n_best_size,
313
314
315
                        args.max_answer_length, args.do_lower_case, output_prediction_file,
                        output_nbest_file, output_null_log_odds_file, args.verbose_logging,
                        args.version_2_with_negative, args.null_score_diff_threshold)
316

LysandreJik's avatar
Cleanup  
LysandreJik committed
317
    # Compute the F1 and exact scores.
LysandreJik's avatar
LysandreJik committed
318
    results = squad_evaluate(examples, predictions)
319
320
321
    return results

def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
VictorSanh's avatar
VictorSanh committed
322
    if args.local_rank not in [-1, 0] and not evaluate:
thomwolf's avatar
thomwolf committed
323
324
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

325
    # Load data features from cache or dataset file
LysandreJik's avatar
Cleanup  
LysandreJik committed
326
327
    input_dir = args.data_dir if args.data_dir else "."
    cached_features_file = os.path.join(input_dir, 'cached_{}_{}_{}'.format(
thomwolf's avatar
thomwolf committed
328
        'dev' if evaluate else 'train',
329
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
LysandreJik's avatar
Cleanup  
LysandreJik committed
330
331
332
333
        str(args.max_seq_length))
    )

    # Init features and dataset from cache if it exists
334
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
thomwolf's avatar
thomwolf committed
335
        logger.info("Loading features from cached file %s", cached_features_file)
336
337
        features_and_dataset = torch.load(cached_features_file)
        features, dataset = features_and_dataset["features"], features_and_dataset["dataset"]
thomwolf's avatar
thomwolf committed
338
    else:
LysandreJik's avatar
Cleanup  
LysandreJik committed
339
        logger.info("Creating features from dataset file at %s", input_dir)
Lysandre's avatar
Lysandre committed
340

LysandreJik's avatar
Cleanup  
LysandreJik committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
        if not args.data_dir:
            try:
                import tensorflow_datasets as tfds
            except ImportError:
                raise ImportError("If not data_dir is specified, tensorflow_datasets needs to be installed.")

            if args.version_2_with_negative:
                logger.warn("tensorflow_datasets does not handle version 2 of SQuAD.")

            tfds_examples = tfds.load("squad")
            examples = SquadV1Processor().get_examples_from_dataset(tfds_examples, evaluate=evaluate)
        else:
            processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor()
            examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
LysandreJik's avatar
LysandreJik committed
355

356
        features, dataset = squad_convert_examples_to_features( 
Lysandre's avatar
Lysandre committed
357
358
359
360
361
362
            examples=examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=not evaluate,
363
            return_dataset='pt'
Lysandre's avatar
Lysandre committed
364
365
        )

thomwolf's avatar
thomwolf committed
366
367
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
368
            torch.save({"features": features, "dataset": dataset}, cached_features_file)
thomwolf's avatar
thomwolf committed
369

VictorSanh's avatar
VictorSanh committed
370
    if args.local_rank == 0 and not evaluate:
thomwolf's avatar
thomwolf committed
371
372
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

373
374
    if output_examples:
        return dataset, examples, features
thomwolf's avatar
thomwolf committed
375
376
    return dataset

377
378
379
380
381

def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
382
383
384
385
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
386
387
388
389
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model checkpoints and predictions will be written.")

    ## Other parameters
LysandreJik's avatar
Cleanup  
LysandreJik committed
390
391
    parser.add_argument("--data_dir", default=None, type=str,
                        help="The input data dir. Should contain the .json files for the task. If not specified, will run with tensorflow_datasets.")
392
393
394
395
396
397
398
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")

thomwolf's avatar
thomwolf committed
399
400
401
402
403
    parser.add_argument('--version_2_with_negative', action='store_true',
                        help='If true, the SQuAD examples contain some that do not have an answer.')
    parser.add_argument('--null_score_diff_threshold', type=float, default=0.0,
                        help="If null_score - best_non_null is greater than the threshold predict null.")

404
405
406
407
408
409
410
411
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
thomwolf's avatar
thomwolf committed
412
413
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
414
    parser.add_argument("--do_eval", action='store_true',
thomwolf's avatar
thomwolf committed
415
                        help="Whether to run eval on the dev set.")
416
417
    parser.add_argument("--evaluate_during_training", action='store_true',
                        help="Rul evaluation during training at each logging step.")
thomwolf's avatar
thomwolf committed
418
    parser.add_argument("--do_lower_case", action='store_true',
419
                        help="Set this flag if you are using an uncased model.")
thomwolf's avatar
thomwolf committed
420

421
422
423
424
    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
thomwolf's avatar
thomwolf committed
425
426
427
428
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
429
    parser.add_argument("--weight_decay", default=0.0, type=float,
Kazutoshi Shinoda's avatar
Kazutoshi Shinoda committed
430
                        help="Weight decay if we apply some.")
431
432
433
434
    parser.add_argument("--adam_epsilon", default=1e-8, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
435
436
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
437
438
439
440
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.")
441
    parser.add_argument("--n_best_size", default=20, type=int,
thomwolf's avatar
thomwolf committed
442
                        help="The total number of n-best predictions to generate in the nbest_predictions.json output file.")
443
444
445
446
447
448
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
    parser.add_argument("--verbose_logging", action='store_true',
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
thomwolf's avatar
thomwolf committed
449

450
451
452
453
454
455
    parser.add_argument('--logging_steps', type=int, default=50,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
thomwolf's avatar
thomwolf committed
456
    parser.add_argument("--no_cuda", action='store_true',
457
                        help="Whether not to use CUDA when available")
458
459
460
461
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
thomwolf's avatar
thomwolf committed
462
    parser.add_argument('--seed', type=int, default=42,
463
                        help="random seed for initialization")
464

thomwolf's avatar
thomwolf committed
465
    parser.add_argument("--local_rank", type=int, default=-1,
466
                        help="local_rank for distributed training on gpus")
thomwolf's avatar
thomwolf committed
467
468
469
470
471
    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
472
473
474
475
    parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
    args = parser.parse_args()

LysandreJik's avatar
Cleanup  
LysandreJik committed
476
477
478
479
480
    args.predict_file = os.path.join(args.output_dir, 'predictions_{}_{}.txt'.format(
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
        str(args.max_seq_length))
    )

thomwolf's avatar
thomwolf committed
481
482
483
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir))

484
    # Setup distant debugging if needed
485
486
487
488
489
490
491
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

thomwolf's avatar
thomwolf committed
492
    # Setup CUDA, GPU & distributed training
493
494
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
thomwolf's avatar
thomwolf committed
495
496
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
497
498
499
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
thomwolf's avatar
thomwolf committed
500
501
        args.n_gpu = 1
    args.device = device
502

thomwolf's avatar
thomwolf committed
503
    # Setup logging
504
505
506
    logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                        datefmt = '%m/%d/%Y %H:%M:%S',
                        level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
thomwolf's avatar
thomwolf committed
507
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
508
                    args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
509

510
511
    # Set seed
    set_seed(args)
512

thomwolf's avatar
thomwolf committed
513
    # Load pretrained model and tokenizer
514
    if args.local_rank not in [-1, 0]:
515
516
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

517
    args.model_type = args.model_type.lower()
518
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
thomwolf's avatar
thomwolf committed
519
520
521
522
523
524
525
526
527
    config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
                                                do_lower_case=args.do_lower_case,
                                                cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                        config=config,
                                        cache_dir=args.cache_dir if args.cache_dir else None)
528
529

    if args.local_rank == 0:
530
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
531

thomwolf's avatar
thomwolf committed
532
    model.to(args.device)
533

534
535
    logger.info("Training/evaluation parameters %s", args)

Simon Layton's avatar
Simon Layton committed
536
537
538
539
540
541
542
543
544
545
    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set.
    # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will
    # remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, 'einsum')
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

thomwolf's avatar
thomwolf committed
546
    # Training
547
    if args.do_train:
548
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
549
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
550
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
551

552

thomwolf's avatar
thomwolf committed
553
    # Save the trained model and the tokenizer
Peng Qi's avatar
Peng Qi committed
554
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
555
556
557
558
559
560
561
562
563
564
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model, 'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
565
566

        # Good practice: save your training arguments together with the trained model
567
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))
568

569
        # Load a trained model and vocabulary that you have fine-tuned
Lysandre's avatar
Lysandre committed
570
        model = model_class.from_pretrained(args.output_dir, force_download=True)
Peng Qi's avatar
Peng Qi committed
571
        tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case)
572
573
574
        model.to(args.device)


thomwolf's avatar
thomwolf committed
575
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
576
577
578
579
580
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
581
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs
thomwolf's avatar
thomwolf committed
582

583
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
thomwolf's avatar
thomwolf committed
584

585
        for checkpoint in checkpoints:
thomwolf's avatar
thomwolf committed
586
            # Reload the model
587
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
Lysandre's avatar
Lysandre committed
588
            model = model_class.from_pretrained(checkpoint, force_download=True)
589
            model.to(args.device)
thomwolf's avatar
thomwolf committed
590
591

            # Evaluate
592
            result = evaluate(args, model, tokenizer, prefix=global_step)
thomwolf's avatar
thomwolf committed
593

594
595
            result = dict((k + ('_{}'.format(global_step) if global_step else ''), v) for k, v in result.items())
            results.update(result)
thomwolf's avatar
thomwolf committed
596

597
    logger.info("Results: {}".format(results))
thomwolf's avatar
thomwolf committed
598

599
    return results
600
601
602
603


if __name__ == "__main__":
    main()